Démantèlement de l’INB 105
-
Evaluation environnementale des risques liés aux rejets radioactifs

RÉFÉRENCE AREVA RMC : RMC_4001417B

RÉDACTEURS	VÉRIFICATEUR	APPROBATEUR
NOMS | |
DATES | 28/03/13 | 28/03/13 | 28/03/13
SIGNATURES | |

AREVA RISK MANAGEMENT CONSULTING S.A.S.
État des révisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Indice</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/03/13</td>
<td>A</td>
<td>Version initiale BPO</td>
</tr>
<tr>
<td>28/03/13</td>
<td>B</td>
<td>Intégration des commentaires de BU Val - Version finale</td>
</tr>
</tbody>
</table>

Documents d’entrée

<table>
<thead>
<tr>
<th>Indice</th>
<th>Référence</th>
<th>Titre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Liste de diffusion

<table>
<thead>
<tr>
<th>Nom</th>
<th>Société</th>
<th>Nom</th>
<th>Société</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sommaire

1 Objet de l'étude..5
2 L’outil ERICA... ...6
 2.1 Généralités sur le projet ERICA ..6
 2.2 Présentation de l’outil ERICA ..6
 2.3 Méthodologie ...7
3 Données d’entrée relatives à l’outil ...11
 3.1 Niveau 1 de l’outil ERICA..11
 3.1.1 Radionucléides disponibles..11
 3.1.2 Valeur de débit de dose sans effet ...12
 3.1.3 Effluents atmosphériques..13
 3.1.4 Effluents liquides...13
 3.2 Niveau 2 de l’outil ERICA..13
 3.2.1 Organisme de référence ...14
 3.2.2 Facteur d’incertitude..15
 3.2.3 Paramètres radioécologiques..15
 3.2.4 Facteurs d’occupation...17
 3.2.5 Facteurs de pondération radiologique...18
4 Données d’entrée liés au projet...19
 4.1 Débit de dose sans effets ..19
 4.2 Termes sources ..19
 4.2.1 Termes sources - rejets atmosphériques..21
 4.2.2 Termes sources - rejets liquides..26
 4.3 Hypothèses liées au terme source..30
 4.4 Données météorologiques..30
 4.5 Choix des points d’étude - rejets atmosphériques...33
5 Résultats - rejets atmosphériques...36
 5.1 Résultats - rejets atmosphériques - période 1...36
 5.1.1 Résultats - rejets atmosphériques - INB 105...36
5.1.2 Résultats - rejets atmosphériques - ICPE COMURHEX I ...38
5.1.3 Résultats - rejets atmosphériques - ICPE COMURHEX II ..39
5.1.4 Synthèse des résultats - rejets atmosphériques - période 1 ..40
5.2 Résultats - rejets atmosphériques - période 2 ...43
5.2.1 Résultats - rejets atmosphériques - INB 105 ...43
5.2.2 Résultats - rejets atmosphériques - ICPE COMURHEX I ...45
5.2.3 Résultats - rejets atmosphériques - ICPE COMURHEX II ...46
5.2.4 Synthèse des résultats - rejets atmosphériques - période 2 ...47
6 Résultats - rejets liquides ...50
6.1 Résultats - rejets liquides - période 1 ...50
6.2 Résultats rejets liquides - période 2 ..51
6.3 Analyse de sensibilité ..52
7 Conclusion ..54
1 Objet de l’étude

Cette étude a pour objectif d’évaluer l’impact environnemental lié aux rejets radioactifs, liquides et atmosphériques, des installations de la direction de conversion de l’Établissement AREVA NC de Pierrelatte.

Cette évaluation sera réalisée à l’aide du logiciel ERICA.

Les résultats présentés ci-dessous sont basés sur les données et les hypothèses fournies et validées par l’exploitant.
2 L’outil ERICA

2.1 Généralités sur le projet ERICA

Ce projet a abouti aux résultats suivants :

- la mise à jour de la base de données FREDERICA\(^1\) concernant les effets des rayonnements ionisants sur les organismes non-humains,
- l’exploitation de cette base de données pour définir des critères de protection des écosystèmes,
- la conception d’une méthode qui permet de caractériser le risque écologique en analysant des expositions de la faune et de la flore aux rayonnements ionisants et les effets de cette exposition.

Ce projet s’inscrit dans un consensus international pour développer des méthodes d’évaluation du risque radiologique pour l’environnement, à l’image de ce qui existe pour les substances chimiques.

Son objectif était de concevoir une approche intégrée pour évaluer les effets des contaminants radioactifs sur l’environnement. Il s’agissait d’envisager les plans scientifiques, décisionnels et sociétaux, en mettant l’accent sur la protection de la faune, de la flore et des écosystèmes. Pour ce faire, ERICA s’est fondé sur les acquis du projet européen FASSET\(^2\) (5ème PCRD), qui a formalisé le cadre conceptuel de l’évaluation de l’impact environnemental des radionucléides.

2.2 Présentation de l’outil ERICA

L’outil ERICA, né de ce projet, sera utilisé dans le cadre de cette étude. Il permet d’évaluer le risque pour l’environnement de rejets chroniques de substances radioactives. Ce logiciel peut être obtenu à partir du site : https://wiki.ceh.ac.uk/display/rpemain/ERICA. La version utilisée dans le cadre de cette étude est : ERICA Assessment Tool 1.0 mise à jour en novembre 2012.

Cet outil fonctionne avec trois niveaux de précision croissante permettant une approche graduée.

Le premier niveau (appelé Tier) est une étude simple qui requiert un minimum de données d’entrée. Les résultats obtenus sont conservatifs et permettent d’écarter les sites où le risque radiologique pour l’environnement est négligeable. Les concentrations d’activité calculées dans les différents milieux sont comparées aux Environmental Media Concentration Limits (EMCL) qui ont été calculés pour chaque

\(^1\) FREDERICA : FASSET and ERICA Radiation Effect Database (www.frederica-online.org/)

\(^2\) FASSET : Framework for Assessment of Environmental Impact
radionucléide pour l’organisme le plus sensible (faune ou flore). L’EMCL correspond à la concentration d’activité qui provoquerait un débit de dose sans effet.

Le deuxième niveau constitue une étude plus détaillée qui nécessite des données d’entrée supplémentaires pour mieux définir la situation, notamment en ce qui concerne les conditions d’exposition et les paramètres de transfert. Pour chaque organisme de référence, le débit de dose absorbée est estimé et est comparé à la valeur de débit de dose sans effet. Les résultats obtenus peuvent être replacés dans leur contexte en les comparant à un tableau récapitulant les effets des radiations ionisantes ainsi qu’aux valeurs du bruit de fond naturel.

Enfin, le troisième niveau est réservé pour des situations complexes, c’est pourquoi il est difficile de fournir des conseils détaillés sur la façon de l’utiliser puisque chaque situation étudiée sera probablement unique. Ce niveau peut nécessiter de considérer les données des effets biologiques contenues dans la base de données FREDERICA, ou d’entreprendre des études écologiques. Le niveau 3 contrairement aux deux premiers niveaux est une étude probabiliste. L’utilisateur estime la probabilité d’occurrence et la gravité des effets radiologiques sur l’environnement susceptibles de se produire, ce qui permet de discuter de l’acceptabilité du risque pour les espèces non-humaines.

2.3 Méthodologie

L’outil ERICA permet de caractériser le risque radiologique pour l’environnement en calculant un quotient de risque à partir des données de concentration d’activité dans les différents milieux. Ces concentrations peuvent soit être issues de campagnes de mesures réalisées par le site ou encore être déterminées à l’aide d’un modèle de dispersion. L’outil ERICA propose un modèle de dispersion pour les effluents atmosphériques et liquides du site. Ce modèle repose sur le Safety Reports Series (SRS) n°19 de l’AIEA.

Dans la présente étude, il a été choisi d’utiliser le modèle de dispersion proposé par l’outil ERICA uniquement pour les effluents liquides. Pour les effluents atmosphériques, l’utilisation du modèle de dispersion proposé par le logiciel COMODORE est plus pertinente car ce dernier permet une intégration plus précise et plus représentative des données météorologiques. De plus, il permet de considérer plusieurs exutoires à la fois.

Le schéma de principe de l’outil ERICA est présenté dans la figure suivante :

3 Le logiciel COMODORE est une synthèse de trois logiciels validés par l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN) : ACADIE, COTRAM4 et AQUAREJ. Il est destiné au calcul d’impact dosimétrique de rejets chroniques (en fonctionnement normal des installations) de produits radioactifs liquides et gazeux, en prenant en compte les transferts de contamination dans l’environnement, ainsi que les transferts dans la chaîne alimentaire jusqu’à l’homme. Une mise à jour du logiciel a été effectuée en 2012.
Le calcul du quotient de risque est différent aux niveaux 1 et 2.

Principe de l'outil au niveau 1 :

Au niveau 1, pour chaque radionucléide considéré, la concentration d’activité est comparée à l’Environmental Media Concentration Limit (EMCL) correspondant. Les EMCL ont été calculées pour l’organisme le plus limitant et pour chaque combinaison radionucléide-écosystème.

L’EMCL correspond à la concentration d’activité d’un radionucléide qui provoquerait un débit de dose égal au débit de dose sans effet, déterminé par l’utilisateur (voir § 3.1.2 « Valeur de débit de dose sans effets »). Il est déterminé par la formule :

$$ EMCL_n = \frac{PNEDR}{F_n} $$
Où :

- EMCL$_n$: EMCL de l'organisme le plus limitant pour le radionucléide n,
- PNEDR (Predicted No Effect Dose rate) est la valeur de débit de dose sans effet (μGy.h$^{-1}$),
- F_n est le débit de dose reçu par un organisme qui serait confronté à une concentration d'activité unité soit 1 Bq/L pour le milieu aquatique, 1 Bq/kg pour le milieu terrestre ou 1 Bq/m3 pour le milieu atmosphérique ; F s'exprime donc en μGy.h$^{-1}$ par Bq/L ou Bq/kg ou Bq/m3.

Le quotient de risque est ensuite défini par l'équation :

$$RQ_n = \frac{M_n}{EMCL_n}$$

Avec :

- RQ_n le quotient de risque pour le radionucléide n (sans unité),
- M_n, la concentration d'activité en radionucléide n dans le milieu (en Bq.L$^{-1}$ dans l'eau, en Bq.kg$^{-1}$ dans le sol ou les sédiments et en Bq.m$^{-3}$ dans l'air),
- EMCL$_n$: EMCL de l'organisme le plus limitant pour le radionucléide n.

Le quotient de risque correspond en fait au quotient de la concentration par la concentration sans effet.

Un quotient de risque global est ensuite déterminé en sommant les quotients de risque obtenus pour chacun des radionucléides étudiés. Il convient de souligner que l'on somme ici des quotients de risque qui ne correspondent pas nécessairement aux mêmes organismes de référence, ce qui constitue une hypothèse majorante.

Principe de l'outil au niveau 2 :

Au niveau 2, des organismes de référence proposés dans l'outil ERICA sont considérés (voir §3.2.1 « Organismes de référence »). Le débit de dose total (intérieur et externe) est calculé pour chaque organisme de référence. Ce dernier est ensuite comparé au débit de dose sans effet. Pour chaque organisme et chaque radionucléide, un quotient de risque est calculé. Il est défini par :

$$RQ_n = \frac{DR_n}{PNEDR}$$

Où :

- RQ_n le quotient de risque pour le radionucléide n (sans unité),
- DR_n : débit de dose estimé total (μGy.h$^{-1}$) pour chaque radionucléide n,
- PNEDR : débit de dose sans effet (μGy.h$^{-1}$)
Un quotient de risque global pour chaque organisme, est ensuite déterminé en sommant les quotients de risque obtenus pour chacun des radionucléides étudiés.

- Interprétation du quotient de risque

Aux niveaux 1 et 2, le quotient de risque est comparé à la valeur de référence 1. S'il est inférieur à 1, alors il y a une très faible probabilité que le débit de dose reçu par les différents organismes soit supérieur au débit de dose sans effet. Le risque sur l'environnement lié aux rejets radioactifs peut donc être considéré comme négligeable et l'étude est arrêtée.

Si un quotient de risque est supérieur à 1, cela signifie qu'un risque éventuel pour un ou plusieurs compartiments de l'environnement ne peut être écarté à cette étape de l'évaluation. Dans ce cas, il est recommandé de poursuivre l'étude, soit en passant au niveau supérieur soit en affinant les données d'entrée ou les paramètres utilisés. C'est l'équivalent en fin de compte d'un deuxième niveau d'approche de l'évaluation, destinée à réduire les incertitudes et à revoir les hypothèses retenues, souvent majorantes en première approche, vers plus de réalisme.
3 Données d’entrée relatives à l’outil

Les données d’entrée nécessaires à l’utilisation de l’outil ERICA varient en fonctions du niveau de précision choisi, mais aussi en fonction du milieu considéré (air, rivière, …). Si plusieurs milieux sont concernés, une étude doit être menée pour chacun d’entre eux.

Les données d’entrée détaillées pour les deux premiers niveaux de l’outil sont présentées ci-après :

3.1 Niveau 1 de l’outil ERICA

Au premier niveau, la réalisation de l’étude nécessite de déterminer :
- la liste des radionucléides rejetés,
- l’écosystème concerné (Terrestre, Eau douce ou Marin),
- le débit de dose sans effet.

3.1.1 Radionucléides disponibles

La liste des radionucléides proposés par défaut par l’outil est présentée dans la figure suivante :

<table>
<thead>
<tr>
<th>Élément</th>
<th>Isotopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>Ag-110m</td>
</tr>
<tr>
<td>Am</td>
<td>Am-241</td>
</tr>
<tr>
<td>C</td>
<td>C-14</td>
</tr>
<tr>
<td>Cd</td>
<td>Cd-109</td>
</tr>
<tr>
<td>Ge</td>
<td>Ge-141, Ge-144</td>
</tr>
<tr>
<td>Cl</td>
<td>Cl-36</td>
</tr>
<tr>
<td>Cr</td>
<td>Cr-242, Cr-243, Cr-244</td>
</tr>
<tr>
<td>Co</td>
<td>Co-57, Co-58, Co-60</td>
</tr>
<tr>
<td>Cs</td>
<td>Cs-134, Cs-135, Cs-136, Cs-137</td>
</tr>
<tr>
<td>Eu</td>
<td>Eu-152, Eu-154</td>
</tr>
<tr>
<td>H</td>
<td>H-3</td>
</tr>
<tr>
<td>I</td>
<td>I-125, I-129, I-131, I-132, I-133</td>
</tr>
<tr>
<td>Mn</td>
<td>Mn-54</td>
</tr>
<tr>
<td>Nb</td>
<td>Nb-94, Nb-95</td>
</tr>
<tr>
<td>Ni</td>
<td>Ni-59, Ni-65</td>
</tr>
<tr>
<td>Np</td>
<td>Np-237</td>
</tr>
<tr>
<td>P</td>
<td>P-32, P-33</td>
</tr>
<tr>
<td>Pb</td>
<td>Pb-210</td>
</tr>
<tr>
<td>Po</td>
<td>Po-210</td>
</tr>
<tr>
<td>Pu</td>
<td>Pu-238, Pu-239, Pu-240, Pu-241</td>
</tr>
<tr>
<td>Ra</td>
<td>Ra-226, Ra-228</td>
</tr>
<tr>
<td>Ru</td>
<td>Ru-103, Ru-106</td>
</tr>
<tr>
<td>S</td>
<td>S-35</td>
</tr>
<tr>
<td>Sb</td>
<td>Sb-124, Sb-125</td>
</tr>
<tr>
<td>Se</td>
<td>Se-75, Se-79</td>
</tr>
<tr>
<td>Sr</td>
<td>Sr-89, Sr-90</td>
</tr>
<tr>
<td>Te</td>
<td>Te-99</td>
</tr>
<tr>
<td>Te</td>
<td>Te-129m, Te-132</td>
</tr>
<tr>
<td>Th</td>
<td>Th-227, Th-228, Th-230, Th-231, Th-232, Th-234</td>
</tr>
<tr>
<td>U</td>
<td>U-234, U-235, U-238</td>
</tr>
<tr>
<td>Zr</td>
<td>Zr-95</td>
</tr>
</tbody>
</table>

Figure 2 : Liste des radionucléides disponibles sous ERICA
Les radionucléides produits par désintégration, appelés « radionucléides fils », dont la demi-vie est inférieure à 10 jours sont inclus dans les coefficients de conversion de dose de leur radionucléide « père ». Les radionucléides concernés sont présentés dans le tableau suivant :

<table>
<thead>
<tr>
<th>Radionucléide « père »</th>
<th>Radionucléides « fils » considérés à l’équilibre avec leur « père »</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr-90</td>
<td>Y-90</td>
</tr>
<tr>
<td>Ru-106</td>
<td>Rh-106</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Ba-137m</td>
</tr>
<tr>
<td>Pb-210</td>
<td>Bi-210</td>
</tr>
<tr>
<td>Ra-226</td>
<td>At-218 Po-218 Bi-214 Pb-214 Rn-222 Po-214</td>
</tr>
<tr>
<td>Ra-228</td>
<td>Ac-228</td>
</tr>
<tr>
<td>Th-228</td>
<td>Po-216 Ti-208 Bi-212 Pb-212 Rn-220 Po-212 Ra-224</td>
</tr>
<tr>
<td>Th-234</td>
<td>Pa-234m Pa-234</td>
</tr>
<tr>
<td>U-235</td>
<td>Th-231</td>
</tr>
<tr>
<td>Pu-241</td>
<td>U-237</td>
</tr>
</tbody>
</table>

Tableau 1 : Radionucléides issus d’une chaîne de désintégration et considérés dans le calcul des coefficients de conversion de dose.

Remarque : Au niveau 1, il n’est pas possible d’ajouter des isotopes ne faisant pas partie de la liste par défaut. Cette option est cependant disponible pour les niveaux 2 et 3.

3.1.2 Valeur de débit de dose sans effet

Plusieurs valeurs de débit de dose sans effets sont proposées par l’outil :

- la valeur par défaut d’ERICA : 10 μGy.h⁻¹. Cette valeur est valable pour les situations d’expositions chroniques et pour tous les écosystèmes. Elle a été déterminée à l’aide d’une méthode basée sur le traitement mathématique des données de FRED (FASSET Radiation Effect Database) et la méthode SSD (Species Sensitivity Distribution).

- les valeurs tirées des rapports de l’AIEA (1992) et de l’UNSCEAR (1996) : 40 μGy.h⁻¹ pour les animaux terrestres ou 400 μGy.h⁻¹ pour la flore terrestre ainsi que toutes les espèces aquatiques. Il a été montré qu’en dessous de ces valeurs (dans le cas d’une exposition chronique), il n’existe pas d’effets mesurables sur les populations concernées,

- la possibilité est également laissée à l’utilisateur d’entrer une autre valeur s’il le souhaite (en μGy.h⁻¹).
3.1.3 Effluents atmosphériques

Le choix a été fait d’utiliser le modèle de dispersion proposé par le logiciel COMODORE (logiciel spécifique de calcul d’impact dosimétrique utilisé par les sites AREVA notamment ceux du Tricastin et FBFC de Romans-sur-Isère). Les données d’entrées relatives au logiciel sont présentées dans l’étude dosimétrique détaillée du présent projet de démantèlement de l’INB 105\(^4\) et ne sont pas reprises dans la présente étude.

Le logiciel COMODORE est constitué de plusieurs logiciels dont COTRAM qui permet de déterminer les coefficients de transfert atmosphériques (CTA) ainsi que les débits de dépôt, en utilisant des données météorologiques et notamment des probabilités de condition de transfert (vitesse et direction du vent, type de stabilité atmosphérique). Ces données météorologiques sont présentées plus loin au paragraphe 4.4 « Données météorologiques ». Le logiciel COTRAM prend également en compte la hauteur de rejet.

3.1.4 Effluents liquides

En ce qui concerne l’étude de l’impact des effluents liquides, le modèle de dispersion SRS n°19 pour le milieu Rivière a été retenu. Ce modèle, proposé par l’outil ERICA, nécessite les paramètres d’entrée suivants :

- le débit (en m\(^3\)/s),
- la profondeur (en m),
- la largeur (en m),
- la distance entre le point de rejet et le récepteur (en m).

Il faut également préciser si le point de rejet et le récepteur sont situés sur la même rive ou sur des rives opposées.

Le débit d’activité (en Bq.s\(^{-1}\)) pour chacun des radionucléides sélectionnés doit être renseigné.

Remarque : Le modèle de dispersion SRS n°19 en rivière cons idère que le mélange vertical est réalisé à partir d’une distance égale à sept fois la profondeur de la rivière.

3.2 Niveau 2 de l’outil ERICA

Le deuxième niveau constitue une étude plus détaillée qui nécessite des données d’entrée supplémentaires pour mieux définir la situation.

Le choix des radionucléides, du débit de dose sans effet ainsi que l’utilisation des modèles de dispersion sont identiques au premier niveau.

\(^4\) AREVA RMC, 2013. Etude dosimétrique détaillée du projet de démantèlement de l’INB 105
Les principales particularités de ce second niveau sont présentées ci-après.

3.2.1 Organisme de référence

Au niveau 2, les organismes de référence sont à prendre en compte. La liste des organismes de référence proposés par ERICA selon l’écosystème choisi est présentée dans le tableau suivant.

<table>
<thead>
<tr>
<th>Organismes de référence</th>
<th>Eau douce</th>
<th>Marin</th>
<th>Terrestre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organismes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecosystèmes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eau douce</td>
<td>Amphibien</td>
<td>Anémone de mer ou corail</td>
<td>Amphibien</td>
</tr>
<tr>
<td></td>
<td>Bivalve (mollusque)</td>
<td>Crustacé</td>
<td>Arbre</td>
</tr>
<tr>
<td></td>
<td>Crustacé</td>
<td>Echassier</td>
<td>Arbuste</td>
</tr>
<tr>
<td></td>
<td>Gastéropode</td>
<td>Macro algue</td>
<td>Gastéropode</td>
</tr>
<tr>
<td></td>
<td>Larve d’insecte</td>
<td>Mammifère</td>
<td>Herbe et aromate</td>
</tr>
<tr>
<td></td>
<td>Mammifère</td>
<td>Mollusque benthique</td>
<td>Insecte volant</td>
</tr>
<tr>
<td></td>
<td>Oiseau</td>
<td>Phytoplancton</td>
<td>Invertébré (vers)</td>
</tr>
<tr>
<td></td>
<td>Phytoplancton</td>
<td>Plante vasculaire</td>
<td>Invertébré Détritivore</td>
</tr>
<tr>
<td></td>
<td>Plante vasculaire</td>
<td>Poisson benthique</td>
<td>Lichen et Bryophage</td>
</tr>
<tr>
<td></td>
<td>Poisson benthique</td>
<td>Poisson pélagique</td>
<td>Mammifère (cerf)</td>
</tr>
<tr>
<td></td>
<td>Poisson pélagique</td>
<td>Polychète</td>
<td>Mammifère (rat)</td>
</tr>
<tr>
<td></td>
<td>Zooplancton</td>
<td>Reptile</td>
<td>Œuf d’oiseau</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 2 : Organismes de référence listés par écosystème

Il est toutefois possible d’ajouter des organismes de référence. Divers paramètres comme le nom, le groupe, les facteurs d’occupation, la masse ou les dimensions de l’organisme, sont alors à renseigner.
3.2.2 Facteur d’incertitude

Une autre particularité du niveau 2 est le choix d’un facteur d’incertitude (UF). L’espérance du quotient de risque est estimée et est multipliée par ce facteur d’incertitude pour obtenir le quotient de risque. Deux valeurs de facteurs d’incertitude sont proposées par défaut : 3 et 5 mais la possibilité est laissée à l’utilisateur de choisir sa propre valeur.

Si le produit de l’espérance estimée par le facteur d’incertitude UF est inférieur à 1 alors la probabilité que le quotient de risque dépasse 1 est inférieure ou égale à 5% pour UF=3 (et 1% pour UF=5). Cela revient à dire que la probabilité que le débit de dose estimé dépasse le débit de dose sans effet est inférieure ou égale à 5% pour UF=3 (et 1% pour UF=5).

3.2.3 Paramètres radioécologiques

Selon le choix de l’écosystème, divers paramètres sont à renseigner :

- Pour les écosystèmes aquatiques :
 - coefficient de distribution K_d (en L.kg$^{-1}$),
 - facteur de concentration CR (Bq.kg$^{-1}$ (masse fraiche) par Bq.L$^{-1}$).

- Pour les écosystèmes terrestres :
 - facteur de concentration CR (Bq.kg$^{-1}$ (masse fraiche) par Bq.kg$^{-1}$ de sol (masse sèche) ou par Bq.m$^{-3}$ d’air (pour les isotopes de H, C, S et P).

Le coefficient de distribution K_d

Le coefficient de distribution K_d correspond au rapport entre la phase solide et la phase dissoute d’un élément. Cela signifie qu’il permet de calculer la concentration d’activité dans l’eau lorsque la concentration d’activité dans les sédiments est connue, et vice versa.

Il est exprimé en L/kg et est défini par :

$$ Kd = \frac{\text{Concentration d'activité dans les sédiments (en Bq.kg}^{-1})}{\text{Concentration d'activité dans l'eau (en Bq.L}^{-1})} $$

L’outil propose les coefficients de distribution par défaut contenus dans ERICA pour les radionucléides sélectionnés. Il est cependant possible de modifier ces valeurs.
Les facteurs de concentration CR

Les facteurs de concentration CR sont définis comme suit dans l’outil ERICA :

- pour les écosystèmes terrestres :

\[CR = \frac{\text{Concentration d'activité dans l'organisme (en Bq.kg}^{-1}\text{de masse fraîche)}}{\text{Concentration d'activité dans le sol (en Bq.kg}^{-1}\text{de masse sèche)}} \]

Sauf pour les rejets atmosphériques des radionucléides \(^3\)H, \(^14\)C, \(^32,33\)P et \(^35\)S où la grandeur au dénominateur est la concentration d'activité dans l'air (en Bq.m\(^{-3}\)).

- pour les écosystèmes aquatiques :

\[CR = \frac{\text{Concentration d'activité dans l'organisme (en Bq.kg}^{-1}\text{de masse fraîche)}}{\text{Concentration d'activité dans l'eau (en Bq.L}^{-1}\text{)}} \]

Lorsque c'est possible, les données sont tirées d'études. Cependant pour de nombreuses combinaisons organisme/radionucléide, les facteurs de concentrations ne sont pas connus.

Pour déterminer les données manquantes, l’outill propose différentes options, comme par exemple utiliser une valeur de facteur de concentration disponible pour un organisme de référence similaire. L’utilisateur peut cependant choisir d’utiliser ses propres données.
3.2.4 Facteurs d’occupation

Le "facteur d’occupation" correspond à la fraction de temps passé par chaque organisme de référence dans chacun des habitats proposés. Les valeurs utilisées sont les suivantes :

- pour les écosystèmes aquatiques (eau douce) :

<table>
<thead>
<tr>
<th>Organismes de référence</th>
<th>Surface de l’eau</th>
<th>Eau</th>
<th>Surface des sédiments</th>
<th>Sédiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibien</td>
<td>0,5</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Crustacé</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Gastéropode</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Larve d'insecte</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mammifère</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mollusque</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Oiseau</td>
<td>0,8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phytoplancton</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Plante vasculaire</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Poisson benthique</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Poisson pélagique</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zooplancton</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 3 : Facteurs d'occupation des organismes aquatiques
pour les écosystèmes terrestres :

<table>
<thead>
<tr>
<th>Organismes de référence</th>
<th>Surface du sol</th>
<th>Sol</th>
<th>Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibien</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arbre</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arbuste</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastéropode</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Herbe</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Insecte volant</td>
<td>0,8</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td>Invertébré (vers)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Invertébré détritivore</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lichen et bryophyte</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mammifère (cerf)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mammifère (rat)</td>
<td>0,5</td>
<td>0,5</td>
<td>0</td>
</tr>
<tr>
<td>Œuf d’oiseau</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oiseau</td>
<td>0,8</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td>Reptile</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tableau 4 : Facteurs d’occupation des organismes terrestres

3.2.5 Facteurs de pondération radiologique

Le facteur de pondération radiologique \(W_R \) est un facteur qui tient compte de la nature du rayonnement et qui permet de déterminer la dose équivalente \(H_T \) (en Sv) à partir de la dose absorbée \(D_T \) (en Gy) à l’aide de la formule suivante :

\[
H_T = D_T \times W_R
\]

Les valeurs utilisées sont, selon la nature du rayonnement :

- 10 pour le rayonnement \(\alpha \),
- 3 pour \(\beta^- \),
- 1 pour \(\beta^+ \) et \(\gamma \).
4 Données d’entrée liés au projet

4.1 Débit de dose sans effets
Dans le cadre de notre étude, la valeur de débit de dose sans effets définie lors du projet ERICA de 10 µGy.h\(^{-1}\) a été retenue. Cette valeur a été choisie car l’exposition radiologique du site est naturellement faible, et il convient de pouvoir distinguer les situations de faible niveau d’exposition.

4.2 Termes sources
Les radionucléides rejetés via les effluents liquides et atmosphériques dans les milieux « eau » et « air » constituent le terme source. Ce terme source sert de donnée d’entrée au calcul d’impact. Il précise pour chaque radionucléide les quantités rejetées par an pour chaque voie de rejet. Il a été déterminé à partir des différents spectres de rejet associés aux installations de la direction de la conversion de l’Établissement AREVA NC Pierrelatte.

La durée du démantèlement a été divisé en 2 périodes :
- la période 1 d’une durée de 2 ans (de mars 2016 à 2018),
- la période 2 d’une durée de 5 ans (de 2018 à 2023).

Le phasage des périodes, structure par structure, est présenté dans le tableau suivant :
<table>
<thead>
<tr>
<th>Installations</th>
<th>Structures / Unités</th>
<th>Période 1</th>
<th>Période 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eléments de l’INB 105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 2450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aires 72C et 85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aire 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheminée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 100E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 100HF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 200 (électrolyse)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 1200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 1300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 1800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 3100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 5500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICPE historiques présentes dans le périmètre de l’INB 105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICPE de l’usine COMURHEX II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unité 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unité 62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unités 64/65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unité 68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unité 71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ouvrage de protection de la Gaffière</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bassin de confinement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tableau 5 : Phasage du démantèlement de l’INB 105</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2.1 Terme source - rejets atmosphériques

4.2.1.1 Caractéristiques des exutoires

Les hauteurs des exutoires atmosphériques concernés par les rejets atmosphériques de la période 1 sont présentées dans le tableau suivant :

<table>
<thead>
<tr>
<th>Exutoires atmosphériques</th>
<th>Hauteur (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL5</td>
<td>11</td>
</tr>
<tr>
<td>Cheminée Usine (CU)</td>
<td>60</td>
</tr>
<tr>
<td>Emissaire Sas Aire 72C</td>
<td>0,1</td>
</tr>
<tr>
<td>Emissaire Sas Aire 85</td>
<td>0,1</td>
</tr>
<tr>
<td>CL1</td>
<td>20</td>
</tr>
<tr>
<td>CL4</td>
<td>6</td>
</tr>
<tr>
<td>CF</td>
<td>49,47</td>
</tr>
</tbody>
</table>

Tableau 6 : Caractéristiques des exutoires atmosphériques – période 1

Durant la période 2 et pour la plupart des structures, la phase la plus pénalisante en termes de rejets atmosphériques et donc retenue pour les modélisations est la phase d'assainissement du génie civil. Les exutoires associés à cette phase sont les émissaires de sortie de sas. Ces sorties de sas ont été considérées en bas des structures, à une hauteur de 0,1m. Les installations de l'INB 105 concernées par la phase de démantèlement (objet du dossier d'autorisation de MAD/DEM) sont les structures 2000, 2450, la cheminée Usine et l’aire 61. Les structures ICPE historiques présentes dans le périmètre de l'INB 105 suivantes sont également considérées (procédure de remise en état) : St300, St400, St900, St1000, St3100 et St1200.

Les cheminées CL4 (Structure 1800) et CF (usine COMURHEX II) sont également considérées pour le calcul des rejets atmosphériques de la période 2.

4.2.1.2 Terme source – rejets atmosphériques de l’INB 105

Les termes sources retenus pour les rejets atmosphériques des structures de l’INB 105 (à démanteler dans le cadre du dossier de MAD/DEM), lors des périodes 1 et 2 sont présentés dans les tableaux suivants.
4.2.1.2.1 Terme source – rejets atmosphériques - période 1

<table>
<thead>
<tr>
<th>Exutoires atmosphériques</th>
<th>CL5</th>
<th>CU</th>
<th>Emissaire Sas A72C</th>
<th>Emissaire Sas A85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse d'uranium (kg/an)</td>
<td>1.25E-02</td>
<td>9.80E-03</td>
<td>4.47E-05</td>
<td>2.13E-06</td>
</tr>
<tr>
<td>232U</td>
<td>1.35E+04</td>
<td>1.06E+04</td>
<td>4.83E+01</td>
<td>2.30E+00</td>
</tr>
<tr>
<td>234U</td>
<td>4.56E+05</td>
<td>3.58E+05</td>
<td>1.63E+03</td>
<td>7.77E+01</td>
</tr>
<tr>
<td>235U</td>
<td>2.50E+04</td>
<td>1.96E+04</td>
<td>8.94E+01</td>
<td>4.26E+00</td>
</tr>
<tr>
<td>236U</td>
<td>1.10E+05</td>
<td>8.63E+04</td>
<td>3.94E+02</td>
<td>1.88E+01</td>
</tr>
<tr>
<td>238U</td>
<td>1.50E+05</td>
<td>1.18E+05</td>
<td>5.36E+02</td>
<td>2.55E+01</td>
</tr>
<tr>
<td>238Pu</td>
<td>8.13E+02</td>
<td>6.37E+04</td>
<td>2.91E+00</td>
<td>1.38E-01</td>
</tr>
<tr>
<td>239Pu</td>
<td>8.13E+02</td>
<td>6.37E+04</td>
<td>2.91E+00</td>
<td>1.38E-01</td>
</tr>
<tr>
<td>237Np</td>
<td>1.56E+03</td>
<td>1.23E+05</td>
<td>5.59E+00</td>
<td>2.66E-01</td>
</tr>
<tr>
<td>144Nd</td>
<td>1.25E+02</td>
<td>9.80E+03</td>
<td>4.47E-01</td>
<td>2.13E-02</td>
</tr>
<tr>
<td>99Tc</td>
<td>1.25E+03</td>
<td>9.80E+04</td>
<td>4.47E+00</td>
<td>2.13E-01</td>
</tr>
<tr>
<td>137Cs</td>
<td>1.25E+02</td>
<td>9.80E+03</td>
<td>4.47E-01</td>
<td>2.13E-02</td>
</tr>
<tr>
<td>137mBa</td>
<td>1.25E+02</td>
<td>9.80E+03</td>
<td>4.47E-01</td>
<td>2.13E-02</td>
</tr>
<tr>
<td>228Th</td>
<td>1.35E+04</td>
<td>1.06E+04</td>
<td>4.83E+01</td>
<td>2.30E+00</td>
</tr>
<tr>
<td>224Ra</td>
<td>1.35E+04</td>
<td>1.06E+04</td>
<td>4.83E+01</td>
<td>2.30E+00</td>
</tr>
<tr>
<td>220Rn</td>
<td>1.35E+04</td>
<td>1.06E+04</td>
<td>4.83E+01</td>
<td>2.30E+00</td>
</tr>
<tr>
<td>216Po</td>
<td>1.35E+04</td>
<td>1.06E+04</td>
<td>4.83E+01</td>
<td>2.30E+00</td>
</tr>
<tr>
<td>212Pb</td>
<td>1.35E+04</td>
<td>1.06E+04</td>
<td>4.83E+01</td>
<td>2.30E+00</td>
</tr>
<tr>
<td>212Bi</td>
<td>1.35E+04</td>
<td>1.06E+04</td>
<td>4.83E+01</td>
<td>2.30E+00</td>
</tr>
<tr>
<td>212Po – 208Tl</td>
<td>1.35E+04</td>
<td>1.06E+04</td>
<td>4.83E+01</td>
<td>2.30E+00</td>
</tr>
<tr>
<td>231Th</td>
<td>2.50E+04</td>
<td>1.96E+04</td>
<td>8.94E+01</td>
<td>4.26E+00</td>
</tr>
<tr>
<td>234Th</td>
<td>1.50E+05</td>
<td>1.18E+05</td>
<td>5.36E+02</td>
<td>2.55E+01</td>
</tr>
<tr>
<td>234Pa</td>
<td>1.50E+05</td>
<td>1.18E+05</td>
<td>5.36E+02</td>
<td>2.55E+01</td>
</tr>
</tbody>
</table>

TOTAL | 1.18E+06 | 1.30E+06 | 4.22E+03 | 2.01E+02

Tableau 7 : Terme source atmosphérique – Démantèlement INB 105 - période 1
4.2.1.2.2 Terme source – rejets atmosphériques - période 2

Tableau 8 : Terme source atmosphérique – Démantèlement INB 105 - période 2

<table>
<thead>
<tr>
<th>Exutoires atmosphériques</th>
<th>Emissaire sas ST2000</th>
<th>Emissaire sas ST2450</th>
<th>Emissaire sas cheminée usine</th>
<th>Emissaire sas A61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse d’uranium (kg/an)</td>
<td>1.06E-03</td>
<td>3.78E-04</td>
<td>7.55E-04</td>
<td>1.10E-04</td>
</tr>
<tr>
<td>232U</td>
<td>1.14E+03</td>
<td>4.08E+02</td>
<td>8.15E+02</td>
<td>1.19E+02</td>
</tr>
<tr>
<td>234U</td>
<td>3.87E+04</td>
<td>1.38E+04</td>
<td>2.76E+04</td>
<td>4.01E+03</td>
</tr>
<tr>
<td>235U</td>
<td>2.12E+03</td>
<td>7.55E+02</td>
<td>1.51E+03</td>
<td>2.20E+02</td>
</tr>
<tr>
<td>236U</td>
<td>9.34E+03</td>
<td>3.33E+03</td>
<td>6.65E+03</td>
<td>9.68E+02</td>
</tr>
<tr>
<td>238U</td>
<td>1.27E+04</td>
<td>4.53E+03</td>
<td>9.06E+03</td>
<td>1.32E+03</td>
</tr>
<tr>
<td>238Pu</td>
<td>6.89E+01</td>
<td>2.45E+03</td>
<td>4.91E+03</td>
<td>7.14E+02</td>
</tr>
<tr>
<td>239Pu</td>
<td>6.89E+01</td>
<td>2.45E+03</td>
<td>4.91E+03</td>
<td>7.14E+02</td>
</tr>
<tr>
<td>237Np</td>
<td>1.33E+02</td>
<td>4.72E+03</td>
<td>9.44E+03</td>
<td>1.37E+03</td>
</tr>
<tr>
<td>144Nd</td>
<td>1.06E+01</td>
<td>3.78E+02</td>
<td>7.55E+02</td>
<td>1.10E+02</td>
</tr>
<tr>
<td>99Tc</td>
<td>1.06E+02</td>
<td>3.78E+03</td>
<td>7.55E+03</td>
<td>1.10E+03</td>
</tr>
<tr>
<td>137Cs</td>
<td>1.06E+01</td>
<td>3.78E+02</td>
<td>7.55E+02</td>
<td>1.10E+02</td>
</tr>
<tr>
<td>137mBa</td>
<td>1.06E+01</td>
<td>3.78E+02</td>
<td>7.55E+02</td>
<td>1.10E+02</td>
</tr>
<tr>
<td>228Th</td>
<td>1.14E+03</td>
<td>4.08E+02</td>
<td>8.15E+02</td>
<td>1.19E+02</td>
</tr>
<tr>
<td>224Ra</td>
<td>1.14E+03</td>
<td>4.08E+02</td>
<td>8.15E+02</td>
<td>1.19E+02</td>
</tr>
<tr>
<td>220Rn</td>
<td>1.14E+03</td>
<td>4.08E+02</td>
<td>8.15E+02</td>
<td>1.19E+02</td>
</tr>
<tr>
<td>216Po</td>
<td>1.14E+03</td>
<td>4.08E+02</td>
<td>8.15E+02</td>
<td>1.19E+02</td>
</tr>
<tr>
<td>212Pb</td>
<td>1.14E+03</td>
<td>4.08E+02</td>
<td>8.15E+02</td>
<td>1.19E+02</td>
</tr>
<tr>
<td>212Bi</td>
<td>1.14E+03</td>
<td>4.08E+02</td>
<td>8.15E+02</td>
<td>1.19E+02</td>
</tr>
<tr>
<td>212Po – 208Tl</td>
<td>1.14E+03</td>
<td>4.08E+02</td>
<td>8.15E+02</td>
<td>1.19E+02</td>
</tr>
<tr>
<td>231Th</td>
<td>2.12E+03</td>
<td>7.55E+02</td>
<td>1.51E+03</td>
<td>2.20E+02</td>
</tr>
<tr>
<td>234Th</td>
<td>1.27E+04</td>
<td>4.53E+03</td>
<td>9.06E+03</td>
<td>1.32E+03</td>
</tr>
<tr>
<td>234Pa</td>
<td>1.27E+04</td>
<td>4.53E+03</td>
<td>9.06E+03</td>
<td>1.32E+03</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.00E+05</td>
<td>5.00E+04</td>
<td>1.00E+05</td>
<td>1.46E+04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activités (Bq/an)</th>
<th>Total (Bq/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>1.00E+05</td>
</tr>
</tbody>
</table>

Note:

- Ce document est la propriété d’AREVA Risk Management Consulting S.A.S. et ne peut être reproduit ou communiqué sans son autorisation.

AREVA RISK MANAGEMENT CONSULTING S.A.S.

Ind. Page 23/54
4.2.1.3 Termes de source – rejets atmosphériques des ICPE historiques dans le périmètre de l’INB 105

Les termes sources retenus pour les rejets atmosphériques des ICPE historiques incluses dans le périmètre lors des périodes 1 et 2 sont présentés dans les tableaux suivants.

4.2.1.3.1 Termes de source – rejets atmosphériques - période 1

<table>
<thead>
<tr>
<th>Cheminées</th>
<th>CU</th>
<th>CL1</th>
<th>CL2</th>
<th>CL3</th>
<th>CL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse d’uranium (kg/an)</td>
<td>1,87E-01</td>
<td>1,18E+00</td>
<td>2,75E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232U</td>
<td>1,19E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234U</td>
<td>2,57E+06</td>
<td>1,45E+07</td>
<td>3,38E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235U</td>
<td>1,08E+05</td>
<td>6,64E+05</td>
<td>1,55E+04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>236U</td>
<td>9,69E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238U</td>
<td>2,29E+06</td>
<td>1,44E+07</td>
<td>3,36E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>238Pu</td>
<td>7,15E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239Pu</td>
<td>7,15E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237Np</td>
<td>1,38E+05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144Nd</td>
<td>1,10E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99Tc</td>
<td>1,10E+05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137Cs</td>
<td>1,10E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137mBa</td>
<td>1,10E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228Th</td>
<td>1,19E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224Ra</td>
<td>1,19E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220Rn</td>
<td>1,19E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216Po</td>
<td>1,19E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212Pb</td>
<td>1,19E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212Bi</td>
<td>1,19E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212Po – 208Tl</td>
<td>1,19E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231Th</td>
<td>1,08E+05</td>
<td>6,64E+05</td>
<td>1,55E+04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234Th</td>
<td>2,30E+06</td>
<td>1,45E+07</td>
<td>3,38E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234Pa</td>
<td>2,29E+06</td>
<td>1,44E+07</td>
<td>3,36E+05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,03E+07</td>
<td>5,91E+07</td>
<td>1,38E+06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 9 : Termes de source atmosphérique – ICPE historiques du périmètre INB 105 - période 1
4.2.1.3.2 Termes source – rejets atmosphériques - période 2

<table>
<thead>
<tr>
<th>Exutoires atmosphériques</th>
<th>Emissaire sas ST300</th>
<th>Emissaire sas ST400</th>
<th>Emissaire sas ST900</th>
<th>Emissaire sas ST1000</th>
<th>Emissaire sas ST3100</th>
<th>Emissaire sas ST1200</th>
<th>CL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masses d’uranium (kg/an)</td>
<td>1.53E-03</td>
<td>6.39E-03</td>
<td>5.39E-03</td>
<td>1.80E-03</td>
<td>5.99E-04</td>
<td>7.21E-04</td>
<td>2.75E-02</td>
</tr>
<tr>
<td>232U</td>
<td>1.65E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234U</td>
<td>5.59E+04</td>
<td>7.86E+04</td>
<td>6.63E+04</td>
<td>2.21E+04</td>
<td>7.37E+03</td>
<td>8.87E+03</td>
<td>3.38E+05</td>
</tr>
<tr>
<td>235U</td>
<td>1.21E+03</td>
<td>3.60E+03</td>
<td>3.03E+03</td>
<td>1.01E+03</td>
<td>3.37E+02</td>
<td>4.06E+02</td>
<td>1.55E+04</td>
</tr>
<tr>
<td>236U</td>
<td>1.35E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238U</td>
<td>1.87E+04</td>
<td>7.80E+04</td>
<td>6.58E+04</td>
<td>2.20E+04</td>
<td>7.31E+03</td>
<td>8.80E+03</td>
<td>3.36E+05</td>
</tr>
<tr>
<td>Activités (Bq/an)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238Pu</td>
<td>9.95E+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239Pu</td>
<td>9.95E+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237Np</td>
<td>1.91E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144Nd</td>
<td>1.53E+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99Tc</td>
<td>1.53E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137Cs</td>
<td>1.53E+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137mBa</td>
<td>1.53E+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228Th</td>
<td>1.65E+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224Ra</td>
<td>1.65E+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220Rn</td>
<td>1.65E+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216Po</td>
<td>1.65E+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212Pb</td>
<td>1.65E+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212Bi</td>
<td>1.65E+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212Po – 208TI</td>
<td>1.65E+03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231Th</td>
<td>1.21E+03</td>
<td>3.60E+03</td>
<td>3.03E+03</td>
<td>1.01E+03</td>
<td>3.37E+02</td>
<td>4.06E+02</td>
<td>1.55E+04</td>
</tr>
<tr>
<td>234Th</td>
<td>1.87E+04</td>
<td>7.86E+04</td>
<td>6.63E+04</td>
<td>2.21E+04</td>
<td>7.37E+03</td>
<td>8.87E+03</td>
<td>3.38E+05</td>
</tr>
<tr>
<td>234Pa</td>
<td>1.87E+04</td>
<td>7.80E+04</td>
<td>6.58E+04</td>
<td>2.20E+04</td>
<td>7.31E+03</td>
<td>8.80E+03</td>
<td>3.36E+05</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.00E+05</td>
<td>3.20E+05</td>
<td>2.70E+05</td>
<td>9.02E+04</td>
<td>3.00E+04</td>
<td>3.62E+04</td>
<td>1.38E+06</td>
</tr>
</tbody>
</table>

Tableau 10 : Termes source atmosphérique – ICPE historiques du périmètre INB 105 - période 2
4.2.1.4 Terme source – rejets atmosphériques des ICPE de l’usine COMURHEX II

Le terme source retenu pour les rejets atmosphériques des structures de l’usine COMURHEX II est défini dans le tableau suivant. Il est identique pour les périodes 1 et 2.

<table>
<thead>
<tr>
<th>Masse d’uranium (kg/an)</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>234U</td>
<td>7.13E+07</td>
</tr>
<tr>
<td>235U</td>
<td>3.27E+06</td>
</tr>
<tr>
<td>238U</td>
<td>7.08E+07</td>
</tr>
<tr>
<td>231Th</td>
<td>3.27E+06</td>
</tr>
<tr>
<td>234Th</td>
<td>7.13E+07</td>
</tr>
<tr>
<td>234Pa</td>
<td>7.08E+07</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.91E+08</td>
</tr>
</tbody>
</table>

Tableau 11 : Terme source atmosphérique – ICPE de l’usine COMURHEX II – périodes 1 et 2

4.2.2 Terme source - rejets liquides

Les effluents liquides de la direction de conversion de l’Établissement AREVA NC Pierrelatte sont rejetés dans le canal de Donzère Mondragon via trois exutoires (voir Figure 3 : Localisation des exutoires d’effluents liquides) :

- les eaux pluviales sont envoyées au bassin tampon d’AREVA NC (point 1),
- les effluents procédés et rinçages des installations ICPE historiques du périmètre de l’INB 105 et des ICPE de l’usine COMURHEX II ainsi que les effluents de l’ouvrage de protection de la Gaffière sont rejetés au niveau de l’exutoire commun à la STEC et à la STEP d’AREVA NC (point 2),
- les eaux de rinçages des installations ICPE historiques du périmètre de l’INB 105 sont envoyées, en période 2, aux stations de traitement de SOCATRI avant rejet dans le canal (point 3).

A noter qu’il n’y a pas d’effluent liquide généré par les opérations de démantèlement de l’INB 105, ni par les opérations de remise en état de des installations ICPE historiques du périmètre de l’INB 105.
Figure 3 : Localisation des exutoires d’effluents liquides
Le modèle de dispersion liquide de l'outil ERICA utilise les caractéristiques du milieu récepteur suivantes pour le canal de Donzère Mondragon :

- débit : 988 m³/s (débit moyen sur la période 2009-2011) ;
- longueur : d’après le rapport d’étude « Diagnostic écologique et étude des impacts écologiques du fonctionnement du site industriel AREVA NC du Tricastin » 5, la profondeur du canal varie entre 10 et 18m. On choisit la valeur inférieure, plus pénalisante soit 10m ;
- largeur : elle varie entre 125 et 145m. Cette fois on choisit la valeur supérieure car elle est plus pénalisante, soit 145m.

Bien qu’il existe trois points de rejets, on considère par souci de simplification et de façon majorante un point de rejet unique dans le canal. Le caractère majorant de cette hypothèse est démontré au paragraphe 6.3 « Analyse de sensibilité ».

Le modèle de dispersion SRS n°19 en rivière considère que le mélange vertical est complété à partir d’une distance égale à sept fois la profondeur de la rivière. On choisit donc un point de calcul situé à 7x10=70m du point de rejet.

Ce point de calcul n’étant pas localisé plus particulièrement sur l’une des deux rives, on choisit l’option la plus pénalisante, à savoir calculer les concentrations sur la même rive que le rejet.

4.2.2.1 Terme source - rejets liquides - période 1

Les termes sources retenus pour les rejets liquides lors de la période 1 sont présentés dans le tableau suivant.

Pour les installations ICPE historiques du périmètre de l’INB 105, les effluents liés à l’arrêt avant remise en état des différentes structures (eaux de rinçage) ont été séparés des effluents de procédé.

Tableau 12 : Terme source - rejets liquides - période 1

<table>
<thead>
<tr>
<th>Activités</th>
<th>Termes sources</th>
<th>ICPE historiques du périmètre INB 105</th>
<th>ICPE usine CX II</th>
<th>Eaux pluviales</th>
<th>Ouvrage de protection de la Gaffière</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>procédé</td>
<td>rinçage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (m³)</td>
<td></td>
<td>4 000</td>
<td>500</td>
<td>7 000</td>
<td>100 000</td>
</tr>
<tr>
<td>Masse d’uranium (kg/an)</td>
<td>4</td>
<td>0,5</td>
<td>7</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>234U</td>
<td></td>
<td>4,92E+07</td>
<td>6,15E+06</td>
<td>8,61E+07</td>
<td>1,23E+08</td>
</tr>
<tr>
<td>235U</td>
<td></td>
<td>2,25E+06</td>
<td>2,82E+05</td>
<td>3,94E+06</td>
<td>5,63E+06</td>
</tr>
<tr>
<td>238U</td>
<td></td>
<td>4,88E+07</td>
<td>6,10E+06</td>
<td>8,54E+07</td>
<td>1,22E+08</td>
</tr>
<tr>
<td>231Th</td>
<td></td>
<td>2,25E+06</td>
<td>2,82E+05</td>
<td>3,94E+06</td>
<td>5,63E+06</td>
</tr>
<tr>
<td>234Th</td>
<td></td>
<td>4,92E+07</td>
<td>6,15E+06</td>
<td>8,61E+07</td>
<td>1,23E+08</td>
</tr>
<tr>
<td>234Pa</td>
<td></td>
<td>4,88E+07</td>
<td>6,10E+06</td>
<td>8,54E+07</td>
<td>1,22E+08</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2,01E+08</td>
<td>2,51E+07</td>
<td>3,51E+08</td>
<td>5,01E+08</td>
</tr>
</tbody>
</table>

4.2.2.2 Terme source - rejets liquides - période 2

Les termes sources retenus pour les rejets liquides lors de la période 2 sont présentés dans le tableau suivant.

Pour les ICPE historiques du périmètre de l’INB 105, les effluents liés à l’arrêt avant remise en état des différentes structures (eaux de rinçage) ont été séparés des effluents de procédé.

Tableau 13 : Terme source - rejets liquides - période 2

<table>
<thead>
<tr>
<th>Activités</th>
<th>Termes sources</th>
<th>ICPE historiques du périmètre INB 105</th>
<th>ICPE usine CX II</th>
<th>Eaux pluviales</th>
<th>Ouvrage de protection de la Gaffière</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>procédé</td>
<td>rinçage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume (m³)</td>
<td></td>
<td>100</td>
<td>800</td>
<td>7000</td>
<td>100 000</td>
</tr>
<tr>
<td>Masse d’uranium (kg/an)</td>
<td>0,1</td>
<td>0,8</td>
<td>7</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>234U</td>
<td></td>
<td>1,23E+06</td>
<td>9,84E+06</td>
<td>8,61E+07</td>
<td>1,23E+08</td>
</tr>
<tr>
<td>235U</td>
<td></td>
<td>5,63E+04</td>
<td>4,50E+05</td>
<td>3,94E+06</td>
<td>5,63E+06</td>
</tr>
<tr>
<td>238U</td>
<td></td>
<td>1,22E+06</td>
<td>9,76E+06</td>
<td>8,54E+07</td>
<td>1,22E+08</td>
</tr>
<tr>
<td>231Th</td>
<td></td>
<td>5,63E+04</td>
<td>4,50E+05</td>
<td>3,94E+06</td>
<td>5,63E+06</td>
</tr>
<tr>
<td>234Th</td>
<td></td>
<td>1,23E+06</td>
<td>9,84E+06</td>
<td>8,61E+07</td>
<td>1,23E+08</td>
</tr>
<tr>
<td>234Pa</td>
<td></td>
<td>1,22E+06</td>
<td>9,76E+06</td>
<td>8,54E+07</td>
<td>1,22E+08</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>5,01E+06</td>
<td>4,01E+07</td>
<td>3,51E+08</td>
<td>5,01E+08</td>
</tr>
</tbody>
</table>

 AREVA RISK MANAGEMENT CONSULTING S.A.S.

Ce document est la propriété d’AREVA Risk Management Consulting S.A.S. et ne peut être reproduit ou communiqué sans son autorisation

Ind. Page 29/54
4.3 Hypothèses liées au terme source

Certains radionucléides présents dans les termes sources précédents ne font pas partie de la liste par défaut proposée par l’outil ERICA (voir Figure 2 : Liste des radionucléides disponibles sous ERICA). Il s’agit des radionucléides suivants :

- 232U,
- 236U,
- 144Nd,
- 137mBa,
- 224Ra,
- 220Rn,
- 216Po,
- 212Pb,
- 212Bi,
- 208Tl,
- 234Pa.

L’outil ERICA prend en compte les radionucléides produits par désintégration, dont la demi-vie est inférieure à 10 jours. Ces radionucléides sont inclus dans les coefficients de conversion de dose de leurs parents. La liste des radionucléides concernés est présentée au Tableau 1 : Radionucléides issus d’une chaîne de désintégration et considérés dans le calcul des coefficients de conversion de dose.

Plusieurs radionucléides rejetés dans les différentes installations de la direction de la transformation de l’Établissement AREVA NC de Pierrelatte sont concernés. En effet, la contribution du 216Po, 208Tl, 212Bi, 212Pb, 220Rn, 212Po et du 224Ra est prise en compte dans le calcul de dose du 228Th, celle du 234Pa est prise en compte par le 234Th et celle du 137mBa par le 137Cs.

Dans les cas où un radionucléide n’est pas proposé dans la liste par défaut de l’outil ERICA, une solution est de l’assimiler à son radionucléide père. Dans le cadre de cette étude, seuls 232U, 236U et le 144Nd ne sont pas proposés dans la liste. Or ces éléments présentent des différences significatives avec leurs radionucléides pères (période, activité, type de rayonnement) et ne peuvent être considérés comme « équivalents ». Cette solution n’a donc pas été utilisée ici. L’232U, l’236U et le 144Nd ne sont pas pris en compte dans cette étude.

4.4 Données météorologiques

Les données météorologiques retenues sont celles des trois dernières années, de 2009 à 2011, obtenues à partir des données du mât météorologique, situé au nord-ouest de la plateforme AREVA du Tricastin (station de la Piboulette localisée sur la Figure 3).

AREVA RISK MANAGEMENT CONSULTING S.A.S.
Tableau 14 : Fréquence en origine des vents en fonction des différents secteurs pour les conditions stables

<table>
<thead>
<tr>
<th>CRITÈRES DE SELECTION</th>
<th>NOMBRES D'observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe de stabilité</td>
<td>Total sur la période = 156224</td>
</tr>
<tr>
<td>Classe de précipitations</td>
<td>Total pour le tableau = 82792</td>
</tr>
</tbody>
</table>

Tableau 14 : Fréquence en origine des vents en fonction des différents secteurs pour les conditions stables

<table>
<thead>
<tr>
<th>Degrés</th>
<th>360</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
<th>220</th>
<th>240</th>
<th>260</th>
<th>280</th>
<th>300</th>
<th>320</th>
<th>340</th>
<th>Direction inconnue</th>
<th>Toutes directions</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1.27</td>
<td>1.7</td>
<td>0</td>
<td>3.07</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.93</td>
<td>2.5</td>
<td>0</td>
<td>3.43</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.37</td>
<td>5.5</td>
<td>0</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.75</td>
<td>10.4</td>
<td>0</td>
<td>7.37</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6.53</td>
<td>16.4</td>
<td>0.13</td>
<td>0</td>
<td>25.4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9.6</td>
<td>27.9</td>
<td>0.25</td>
<td>0</td>
<td>58.43</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13.03</td>
<td>33.7</td>
<td>0.0</td>
<td>0</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15.4</td>
<td>35.3</td>
<td>1.13</td>
<td>0</td>
<td>46.9</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 15 : Fréquence en origine des vents en fonction des différents secteurs pour les conditions instables en absence de précipitation

<table>
<thead>
<tr>
<th>CRITÈRES DE SELECTION</th>
<th>NOMBRES D'observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe de stabilité</td>
<td>Total sur la période = 156224</td>
</tr>
<tr>
<td>Classe de précipitations</td>
<td>Total pour le tableau = 82792</td>
</tr>
</tbody>
</table>

Tableau 15 : Fréquence en origine des vents en fonction des différents secteurs pour les conditions instables en absence de précipitation

<table>
<thead>
<tr>
<th>Degrés</th>
<th>360</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
<th>220</th>
<th>240</th>
<th>260</th>
<th>280</th>
<th>300</th>
<th>320</th>
<th>340</th>
<th>Direction inconnue</th>
<th>Toutes directions</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>5.9</td>
<td>7</td>
<td>3.8</td>
<td>1.7</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>4.2</td>
<td>4.1</td>
<td>3.1</td>
<td>3</td>
<td>2.9</td>
<td>2.6</td>
<td>1.8</td>
<td>1.9</td>
<td>2.1</td>
<td>2.7</td>
<td>0</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13.7</td>
<td>22.3</td>
<td>13.3</td>
<td>2.57</td>
<td>1.4</td>
<td>1.27</td>
<td>2.47</td>
<td>6.47</td>
<td>18</td>
<td>24.3</td>
<td>38.53</td>
<td>25.87</td>
<td>10.1</td>
<td>4.83</td>
<td>4.1</td>
<td>4.43</td>
<td>5.37</td>
<td>13.07</td>
<td>12.93</td>
<td>568.83</td>
</tr>
</tbody>
</table>

Note
Ce document est la propriété d'AREVA Risk Management Consulting S.A.S. et ne peut être reproduit ou communiqué sans son autorisation.
Tableau 16 : Fréquence en origine des vents en fonction des différents secteurs pour les conditions instables en présence de précipitation

<table>
<thead>
<tr>
<th>Degrés</th>
<th>360</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
<th>220</th>
<th>240</th>
<th>260</th>
<th>280</th>
<th>300</th>
<th>320</th>
<th>340</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.43</td>
<td>0.57</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.73</td>
<td>0.57</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.77</td>
<td>0.47</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.43</td>
<td>0.23</td>
<td>0.23</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.17</td>
<td>0.2</td>
<td>0.1</td>
<td>0.03</td>
<td>0.07</td>
<td>0.07</td>
<td>0.03</td>
<td>0.1</td>
<td>0.07</td>
<td>0.1</td>
<td>0.17</td>
<td>0.13</td>
<td>0.07</td>
<td>0.03</td>
<td>0.03</td>
<td>0.07</td>
<td>0.03</td>
<td>0.13</td>
</tr>
<tr>
<td>Toutes vitesse moyennes</td>
<td>3.6</td>
<td>4.0</td>
<td>2.1</td>
<td>2.3</td>
<td>1.1</td>
<td>1.3</td>
<td>2.2</td>
<td>4.5</td>
<td>4.4</td>
<td>3.3</td>
<td>1.8</td>
<td>2.2</td>
<td>2.2</td>
<td>1.7</td>
<td>1.8</td>
<td>1.5</td>
<td>2.4</td>
<td>0</td>
</tr>
<tr>
<td>Calmes</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4 : Rose des vents 2009-2011 – Station de la Piboulette
4.5 Choix des points d’étude - rejets atmosphériques

Les concentrations ajoutées par les rejets des installations de l’INB 105 ont été modélisées avec le logiciel ADMS 4 dans le cadre de l’Evaluation des Risques Sanitaires (ERS)\(^6\). Ce logiciel a permis de déterminer les points à 1,5 m du sol où la concentration des composés émis dans l’air est maximale.

Les points de plus forte incidence sont identifiés sur la figure suivante, là où les concentrations modélisées sont maximales :

- le point A correspond au point le plus exposé dans l’environnement (hors plateforme),
- le point G correspond au point le plus exposé dans la zone Natura 2000 la plus proche.

Ces points sont identiques pour les périodes 1 et 2 du démantèlement.

\(^6\) URS, mars 2013. Evaluation des Risques Sanitaires associés aux opérations de démantèlement de l’INB 105
Figure 5 : Localisation des points les plus exposés dans l’environnement

Ces points de plus forte incidence sont retenus pour réaliser l’évaluation des effets des substances radioactives sur l’environnement car les concentrations calculées pour le milieu atmosphérique y sont maximale.
Les distances et angles (azimut) entre ces deux points et les différents exutoires atmosphériques de l’installation sont présentés dans le tableau ci-après.

<table>
<thead>
<tr>
<th>Exutoires atmosphériques</th>
<th>Max environnement</th>
<th>Max Natura 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>distance (m)</td>
<td>azimut (°)</td>
</tr>
<tr>
<td>CL1</td>
<td>987</td>
<td>357</td>
</tr>
<tr>
<td>CL4</td>
<td>1161</td>
<td>3</td>
</tr>
<tr>
<td>CL5</td>
<td>803</td>
<td>6</td>
</tr>
<tr>
<td>CF</td>
<td>1075</td>
<td>2</td>
</tr>
<tr>
<td>CU</td>
<td>734</td>
<td>3</td>
</tr>
<tr>
<td>SAS A85</td>
<td>803</td>
<td>356</td>
</tr>
<tr>
<td>SAS A72C</td>
<td>768</td>
<td>6</td>
</tr>
<tr>
<td>SAS ST900</td>
<td>965</td>
<td>357</td>
</tr>
<tr>
<td>SAS ST400</td>
<td>841</td>
<td>357</td>
</tr>
<tr>
<td>SAS ST300</td>
<td>848</td>
<td>353</td>
</tr>
<tr>
<td>SAS ST1200</td>
<td>1149</td>
<td>2</td>
</tr>
<tr>
<td>SAS ST3100</td>
<td>754</td>
<td>6</td>
</tr>
<tr>
<td>SAS ST1000</td>
<td>964</td>
<td>358</td>
</tr>
<tr>
<td>SAS ST2000</td>
<td>803</td>
<td>6</td>
</tr>
<tr>
<td>SAS A61</td>
<td>786</td>
<td>8</td>
</tr>
<tr>
<td>SAS CU</td>
<td>734</td>
<td>3</td>
</tr>
<tr>
<td>SAS ST2450</td>
<td>806</td>
<td>357</td>
</tr>
</tbody>
</table>

Tableau 17 : Distances et Azimut entre les points les plus exposés dans l’environnement et les différents exutoires atmosphériques du périmètre de l’INB 105
5 Résultats - rejets atmosphériques

Dans le cadre de la présente évaluation environnementale des risques liés aux rejets radioactifs, il a été décidé dans un premier temps d’utiliser le modèle de dispersion du logiciel COMODORE afin de déterminer les concentrations d’activité dans le sol à partir du terme source. Dans un second temps, l’outil ERICA permet de déterminer les quotients de risque associés à ces concentrations.

L’étude avec l’outil ERICA est démarrée au Niveau 1 et se poursuivra si besoin aux niveaux supérieurs. Ce niveau repose sur plusieurs hypothèses majorantes et constitue ainsi un premier niveau d’approche qui permet d’écarter les sites où le risque radiologique pour l’environnement est négligeable.

Le détail des calculs est présenté par périodes et par installations dans les paragraphes suivants.

5.1 Résultats - rejets atmosphériques - période 1

5.1.1 Résultats - rejets atmosphériques - INB 105

A l’aide du modèle de dispersion de COMODORE et en considérant une masse volumique de sol en surface de 340 kg/m² (1700 kg/m³) sur une profondeur de 20 cm, on obtient pour le point le plus impacté dans l’environnement (point A localisé sur la Figure 5) les concentrations d’activité dans le sol.. Dans le tableau ci-après, ces concentrations sont détaillées pour chacun des exutoires atmosphériques de l’INB 105 à l’origine de rejet en période 1.

<table>
<thead>
<tr>
<th>Concentration d’activité dans le sol (Bq/kg)</th>
<th>CL5</th>
<th>CU</th>
<th>sas A85</th>
<th>sas A72C</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137(*)</td>
<td>1,05E-08</td>
<td>1,48E-07</td>
<td>1,62E-12</td>
<td>4,52E-11</td>
<td>1,59E-07</td>
</tr>
<tr>
<td>Np-237</td>
<td>1,31E-07</td>
<td>1,86E-06</td>
<td>2,01E-11</td>
<td>5,64E-10</td>
<td>1,99E-06</td>
</tr>
<tr>
<td>Pu-238</td>
<td>6,92E-08</td>
<td>9,77E-07</td>
<td>1,06E-11</td>
<td>2,99E-10</td>
<td>1,05E-06</td>
</tr>
<tr>
<td>Pu-239</td>
<td>6,98E-08</td>
<td>9,85E-07</td>
<td>1,07E-11</td>
<td>3,01E-10</td>
<td>1,06E-06</td>
</tr>
<tr>
<td>Tc-99</td>
<td>8,51E-09</td>
<td>1,20E-07</td>
<td>1,31E-12</td>
<td>3,67E-11</td>
<td>1,29E-07</td>
</tr>
<tr>
<td>Th-228(*)</td>
<td>8,20E-07</td>
<td>1,16E-07</td>
<td>1,26E-10</td>
<td>3,53E-09</td>
<td>9,39E-07</td>
</tr>
<tr>
<td>Th-231</td>
<td>4,51E-09</td>
<td>6,38E-10</td>
<td>6,96E-13</td>
<td>1,95E-11</td>
<td>5,17E-09</td>
</tr>
<tr>
<td>Th-234(*)</td>
<td>6,13E-07</td>
<td>8,69E-08</td>
<td>9,42E-11</td>
<td>2,64E-09</td>
<td>7,03E-07</td>
</tr>
<tr>
<td>U-234</td>
<td>3,72E-05</td>
<td>5,26E-06</td>
<td>5,73E-09</td>
<td>1,60E-07</td>
<td>4,26E-05</td>
</tr>
</tbody>
</table>

Concentration d’activité dans le sol (Bq/kg)

<table>
<thead>
<tr>
<th>Radionucléides</th>
<th>CL5</th>
<th>CU</th>
<th>sas A85</th>
<th>sas A72C</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-235</td>
<td>2,04E-06</td>
<td>2,88E-07</td>
<td>3,14E-10</td>
<td>8,79E-09</td>
<td>2,34E-06</td>
</tr>
<tr>
<td>U-238</td>
<td>1,22E-05</td>
<td>1,73E-06</td>
<td>1,88E-09</td>
<td>5,27E-08</td>
<td>1,40E-05</td>
</tr>
</tbody>
</table>

(*) La contribution du 210Po, 208Tl, 212Bi, 212Pb, 220Rn, 212Po et du 224Ra est prise en compte dans le calcul de dose du 228Th. De la même manière, celle du 234Pa est prise en compte par le 234Th et le 137Ba par le 137Cs. (voir § 4.3).

Tableau 18 : Concentration d’activité dans le sol attribuable au démantèlement de l’INB 105 au point le plus impacté dans l’environnement – période 1

L’outil ERICA permet ensuite de calculer les quotients de risque correspondants ainsi que l’organisme de référence le plus impacté pour chaque radionucléide.

<table>
<thead>
<tr>
<th>Radionucléides</th>
<th>Quotient de risque</th>
<th>Organisme de référence le plus impacté</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137</td>
<td>5,09E-11</td>
<td>Mammifère (cerf)</td>
</tr>
<tr>
<td>Np-237</td>
<td>5,27E-09</td>
<td>Arbuste</td>
</tr>
<tr>
<td>Pu-238</td>
<td>1,03E-09</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>Pu-239</td>
<td>9,75E-10</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>Tc-99</td>
<td>6,10E-11</td>
<td>Œuf d’oiseau</td>
</tr>
<tr>
<td>Th-228</td>
<td>4,21E-09</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>Th-231</td>
<td>1,41E-14</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>Th-234</td>
<td>4,39E-12</td>
<td>Herbe et aromate</td>
</tr>
<tr>
<td>U-234</td>
<td>2,56E-08</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>U-235</td>
<td>1,33E-09</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>U-238</td>
<td>9,25E-09</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>Σ</td>
<td>4,77E-08</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 19 : Quotient de risque attribuable au démantèlement de l’INB 105 au point le plus impacté dans l’environnement – période 1

Le quotient de risque attribuable aux rejets atmosphériques de l’INB 105 en période 1 est de $4,77.10^{-8}$ pour le point le plus impacté dans l’environnement (point A voir Figure 5). L’outil considère que pour un quotient de risque inférieur à 1, le risque radiologique pour l’environnement est négligeable et préconise d’arrêter l’étude.

Il convient de souligner qu’au niveau 1, le quotient de risque global est obtenu en sommant les quotients de risque de chaque radionucléide alors que ces derniers sont déterminés pour des organismes de référence différents. Cette hypothèse est majorante.

AREVA RISK MANAGEMENT CONSULTING S.A.S.
5.1.2 Résultats - rejets atmosphériques - ICPE historiques du périmètre de l’INB 105

Les concentrations d’activité dans le sol au niveau du point le plus impacté dans l’environnement (point A voir Figure 5) et dues aux rejets atmosphériques des différentes cheminées des ICPE historiques du périmètre de l’INB 105 en période 1 sont présentées dans le tableau suivant.

<table>
<thead>
<tr>
<th>Concentration d’activité dans le sol (Bq/kg)</th>
<th>CL1</th>
<th>CL4</th>
<th>Cheminée Usine</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137 (*)</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,66E-07</td>
<td>1,66E-07</td>
</tr>
<tr>
<td>Np-237</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>2,08E-06</td>
<td>2,08E-06</td>
</tr>
<tr>
<td>Pu-238</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,10E-06</td>
<td>1,10E-06</td>
</tr>
<tr>
<td>Pu-239</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,11E-06</td>
<td>1,11E-06</td>
</tr>
<tr>
<td>Tc-99</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,35E-07</td>
<td>1,35E-07</td>
</tr>
<tr>
<td>Th-228 (*)</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,30E-07</td>
<td>1,30E-07</td>
</tr>
<tr>
<td>Th-231</td>
<td>5,21E-08</td>
<td>1,77E-09</td>
<td>3,51E-09</td>
<td>5,74E-08</td>
</tr>
<tr>
<td>Th-234 (*)</td>
<td>2,57E-05</td>
<td>8,74E-07</td>
<td>1,69E-06</td>
<td>2,83E-05</td>
</tr>
<tr>
<td>U-234</td>
<td>2,35E-05</td>
<td>8,00E-07</td>
<td>1,59E-06</td>
<td>2,59E-05</td>
</tr>
<tr>
<td>U-235</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>1,42E-06</td>
<td>1,42E-06</td>
</tr>
<tr>
<td>U-238</td>
<td>5,10E-04</td>
<td>1,73E-05</td>
<td>3,36E-05</td>
<td>5,61E-04</td>
</tr>
</tbody>
</table>

(*) La contribution du ^{210}Po, ^{208}TI, ^{212}Bi, ^{212}Pb, ^{220}Rn, ^{212}Po et du ^{224}Ra est prise en compte dans le calcul de dose du ^{228}Th. De la même manière, celle du ^{234}Pa est prise en compte par le ^{234}Th et le ^{137m}Ba par le ^{137}Cs. (voir § 4.3).

Tableau 20 : Concentration d’activité dans le sol attribuable aux ICPE historiques du périmètre de l’INB 105 au point le plus impacté dans l’environnement – période 1

L’outil ERICA permet ensuite de calculer les quotients de risque correspondants. Les organismes les plus impactés sont les mêmes que pour les rejets liés au démantèlement de l’INB 105 (voir Tableau 19).

<table>
<thead>
<tr>
<th>Radionucléides</th>
<th>Quotient de risque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137</td>
<td>5,31E-11</td>
</tr>
<tr>
<td>Np-237</td>
<td>5,51E-09</td>
</tr>
<tr>
<td>Pu-238</td>
<td>1,08E-09</td>
</tr>
<tr>
<td>Pu-239</td>
<td>1,02E-09</td>
</tr>
<tr>
<td>Tc-99</td>
<td>6,39E-11</td>
</tr>
<tr>
<td>Th-228</td>
<td>5,82E-10</td>
</tr>
<tr>
<td>Th-231</td>
<td>1,57E-13</td>
</tr>
<tr>
<td>Th-234</td>
<td>1,77E-10</td>
</tr>
<tr>
<td>U-234</td>
<td>1,55E-08</td>
</tr>
</tbody>
</table>
Tableau 21 : Quotient de risque attribuable aux rejets des ICPE historiques du périmètre de l’INB 105 au point le plus impacté dans l’environnement – période 1

Le quotient de risque attribuable aux rejets atmosphériques des ICPE historiques du périmètre de l’INB 105 en période 1 est de 3.96×10^{-7} pour le point le plus impacté dans l’environnement (point A voir Figure 5). L’outil considère que pour un quotient de risque inférieur à 1, le risque radiologique pour l’environnement est négligeable et préconise d’arrêter l’étude.

5.1.3 Résultats - rejets atmosphériques - ICPE de l’usine COMURHEX II

Les concentrations d’activité dans le sol au niveau du point le plus impacté dans l’environnement et dues aux rejets atmosphériques de la cheminée CF des ICPE de l’usine COMURHEX II en période 1, sont présentées dans le tableau suivant.

<table>
<thead>
<tr>
<th>Radionucléides</th>
<th>Quotient de risque</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-235</td>
<td>8.08E-10</td>
</tr>
<tr>
<td>U-238</td>
<td>3.71E-07</td>
</tr>
<tr>
<td>Σ</td>
<td>3.96E-07</td>
</tr>
</tbody>
</table>

(*) La contribution du ^{234}Pa est prise en compte dans le calcul de dose du ^{234}Th (voir § 4.3).

Tableau 22 : Concentration d’activité dans le sol attribuable aux rejets des ICPE de l’usine COMURHEX II au point le plus impacté dans l’environnement

L’outil ERICA permet ensuite de calculer les quotients de risque correspondants ainsi que l’organisme de référence le plus impacté pour chaque radionucléide.

<table>
<thead>
<tr>
<th>Radionucléides</th>
<th>Quotient de risque</th>
<th>Organisme de référence le plus impacté</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th-231</td>
<td>2.73E-13</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>Th-234 (*)</td>
<td>3.09E-10</td>
<td>Herbe et aromate</td>
</tr>
<tr>
<td>U-234</td>
<td>5.93E-07</td>
<td>Lichen et Bryophyte</td>
</tr>
</tbody>
</table>
Tableau 23 : Quotient de risque attribuable aux rejets des ICPE de l’usine COMURHEX II au point le plus impacté dans l’environnement

Le quotient de risque attribuable aux rejets atmosphériques aux rejets des ICPE de l’usine COMURHEX II en période 1 est de $1,27 \times 10^{-6}$ pour le point le plus impacté dans l’environnement. L’outil considère que pour un quotient de risque inférieur à 1, le risque radiologique pour l’environnement est négligeable et préconise d’arrêter l’étude.

5.1.4 Synthèse des résultats - rejets atmosphériques - période 1

5.1.4.1 Point le plus impacté dans l’environnement

Les quotients de risque induits par les rejets atmosphériques de chaque installation sont rappelés dans le tableau suivant :

<table>
<thead>
<tr>
<th>Radionucléides</th>
<th>Quotient de risque</th>
<th>Organisme de référence le plus impacté</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-235</td>
<td>2,58E-08</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>U-238</td>
<td>6,48E-07</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>Σ</td>
<td>1,27E-06</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 24 : Quotients de risque attribuables aux différentes installations au point le plus impacté dans l’environnement en période 1

En période 1, l’ensemble des rejets atmosphériques de la direction de la conversion de l’Établissement AREVA NC de Pierrelatte est à l’origine d’un quotient de risque global de $1,71 \times 10^{-6}$. La valeur obtenue étant très inférieure à la valeur de référence de 1, on peut conclure en l’absence de risque radiologique pour l’environnement en période 1.

Les rejets liés aux opérations de démantèlement de l’INB 105 représentent moins de 3% du quotient de risque global du périmètre de l’INB 105.
5.1.4.2 Point le plus exposé de la zone Natura 2000

Les concentrations d'activité dans le sol attribuables aux rejets atmosphériques des différentes installations de la direction de la conversion de l’Établissement AREVA NC de Pierrelatte ont également été calculées au niveau du point le plus exposé dans la zone Natura 2000 la plus proche (Point G localisé sur la Figure 5). Ces concentrations sont présentées dans le tableau suivant :

<table>
<thead>
<tr>
<th>Concentration d’activité dans le sol (Bq/kg)</th>
<th>DEM INB 105</th>
<th>ICPE historiques du périmètre INB 105</th>
<th>ICPE usine COMURHEX II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137</td>
<td>7,37E-08</td>
<td>7,97E-08</td>
<td></td>
</tr>
<tr>
<td>Np-237</td>
<td>9,23E-07</td>
<td>9,98E-07</td>
<td></td>
</tr>
<tr>
<td>Pu-238</td>
<td>4,86E-07</td>
<td>5,25E-07</td>
<td></td>
</tr>
<tr>
<td>Pu-239</td>
<td>4,90E-07</td>
<td>5,30E-07</td>
<td></td>
</tr>
<tr>
<td>Tc-99</td>
<td>5,98E-08</td>
<td>6,46E-08</td>
<td></td>
</tr>
<tr>
<td>Th-228</td>
<td>2,70E-07</td>
<td>6,23E-08</td>
<td></td>
</tr>
<tr>
<td>Th-231</td>
<td>1,48E-09</td>
<td>2,40E-08</td>
<td>5,18E-08</td>
</tr>
<tr>
<td>Th-234</td>
<td>2,02E-07</td>
<td>1,18E-05</td>
<td>2,55E-05</td>
</tr>
<tr>
<td>U-234</td>
<td>1,22E-05</td>
<td>1,08E-05</td>
<td>5,10E-04</td>
</tr>
<tr>
<td>U-235</td>
<td>6,71E-07</td>
<td>6,82E-07</td>
<td>2,34E-05</td>
</tr>
<tr>
<td>U-238</td>
<td>4,03E-06</td>
<td>2,35E-04</td>
<td>5,06E-04</td>
</tr>
</tbody>
</table>

Tableau 25 : Concentrations d’activité dans le sol attribuables aux différentes installations au point le plus exposé de la zone Natura 2000 en période 1

8 Zone Natura 2000 « Le Rhône aval » n° FR9301590
Les quotients de risque globaux associés sont les suivants :

<table>
<thead>
<tr>
<th></th>
<th>DEM INB 105</th>
<th>ICPE historiques du périmètre INB 105</th>
<th>ICPE usine COMURHEX II</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quotient de risque</td>
<td>1,50E-08</td>
<td>1,66E-07</td>
<td>6,54E-07</td>
<td>8,35E-07</td>
</tr>
</tbody>
</table>

Tableau 26 : Quotients de risque attribuables aux différentes installations au point le plus exposé de la zone Natura 2000 en période 1

Dans la zone Natura 2000 la plus proche, le quotient de risque attribuable aux rejets atmosphériques des installations de la direction de la conversion de l’Établissement AREVA NC de Pierrelatte en période 1 est de $8,35 \times 10^{-7}$. Les rejets de l’INB 105 ne représentent que 1,8% du quotient de risque global des installations.

Le quotient de risque obtenu au point le plus exposé de la zone Natura 2000 la plus proche est inférieur au quotient de risque du point le plus exposé dans l’environnement et pour lequel il a été conclu une absence d’impact.
5.2 Résultats - rejets atmosphériques - période 2

5.2.1 Résultats - rejets atmosphériques - INB 105

En période 2, les concentrations d'activité dans le sol au niveau du point le plus exposé dans l'environnement et dues aux rejets atmosphériques des différentes exutoires atmosphériques de l'INB 105, sont présentées dans le tableau suivant.

<table>
<thead>
<tr>
<th>Concentration d'activité dans le sol (Bq/kg)</th>
<th>Sas Structure 2000</th>
<th>Sas Aire 61</th>
<th>Sas Cheminée Usine</th>
<th>Sas Structure 2450</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137 (*)</td>
<td>2,40E-09</td>
<td>2,58E-08</td>
<td>2,00E-07</td>
<td>6,87E-08</td>
<td>2,97E-07</td>
</tr>
<tr>
<td>Np-237</td>
<td>3,00E-08</td>
<td>3,20E-07</td>
<td>2,49E-06</td>
<td>8,55E-07</td>
<td>3,70E-06</td>
</tr>
<tr>
<td>Pu-238</td>
<td>1,62E-08</td>
<td>1,74E-07</td>
<td>1,35E-06</td>
<td>4,62E-07</td>
<td>2,00E-06</td>
</tr>
<tr>
<td>Pu-239</td>
<td>1,65E-08</td>
<td>1,77E-07</td>
<td>1,38E-06</td>
<td>4,71E-07</td>
<td>2,04E-06</td>
</tr>
<tr>
<td>Tc-99</td>
<td>8,06E-10</td>
<td>8,67E-09</td>
<td>6,72E-08</td>
<td>2,31E-08</td>
<td>9,98E-08</td>
</tr>
<tr>
<td>Th-228 (*)</td>
<td>1,25E-07</td>
<td>1,35E-08</td>
<td>1,04E-07</td>
<td>3,58E-08</td>
<td>2,78E-07</td>
</tr>
<tr>
<td>Th-231</td>
<td>4,27E-10</td>
<td>4,60E-11</td>
<td>3,57E-10</td>
<td>1,22E-10</td>
<td>9,52E-10</td>
</tr>
<tr>
<td>Th-234 (*)</td>
<td>5,79E-08</td>
<td>6,24E-09</td>
<td>4,84E-08</td>
<td>1,66E-08</td>
<td>1,29E-07</td>
</tr>
<tr>
<td>U-234</td>
<td>8,17E-06</td>
<td>8,78E-07</td>
<td>6,83E-06</td>
<td>2,34E-06</td>
<td>1,82E-05</td>
</tr>
<tr>
<td>U-235</td>
<td>4,47E-07</td>
<td>4,81E-08</td>
<td>3,73E-07</td>
<td>1,28E-07</td>
<td>9,97E-07</td>
</tr>
<tr>
<td>U-238</td>
<td>2,68E-06</td>
<td>2,89E-07</td>
<td>2,24E-06</td>
<td>7,68E-07</td>
<td>5,98E-06</td>
</tr>
</tbody>
</table>

(*) La contribution du 210Po, 208Tl, 212Bi, 212Pb, 220Rn, 212Po et du 224Ra est prise en compte dans le calcul de dose du 228Th. De la même manière, celle du 234Pa est prise en compte par le 234Th et le 137mBa par le 137Cs. (voir § 4.3).

Tableau 27 : Concentration d’activité dans le sol attribuable aux opérations de démantèlement de l’INB 105 au point le plus impacté dans l’environnement – période 2

L’outil ERICA permet ensuite de calculer les quotients de risque correspondants ainsi que l’organisme de référence le plus impacté pour chaque radionucléide.
<table>
<thead>
<tr>
<th>Radionucléides</th>
<th>Quotient de risque</th>
<th>Organisme de référence le plus impacté</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th-231</td>
<td>2,60E-15</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>Th-234</td>
<td>8,06E-13</td>
<td>Herbe et aromate</td>
</tr>
<tr>
<td>U-234</td>
<td>1,09E-08</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>U-235</td>
<td>5,67E-08</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>U-238</td>
<td>3,95E-09</td>
<td>Lichen et Bryophyte</td>
</tr>
<tr>
<td>Σ</td>
<td>8,66E-08</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 28 : Quotient de risque attribuable aux opérations de démantèlement de l’INB 105 au point le plus impacté dans l’environnement – période 2

Le quotient de risque attribuable aux rejets atmosphériques de l’INB 105 en période 1 est de $8,66 \times 10^{-8}$ pour le point le plus impacté dans l’environnement. Il est considéré que pour un quotient de risque inférieur à 1, le risque radiologique pour l’environnement est négligeable et préconise d’arrêter l’étude.

Il convient de souligner qu’au niveau 1, le quotient de risque global est obtenu en sommant les quotients de risque de chaque radionucléide alors que ces derniers sont déterminés pour des organismes de référence différents. Cette hypothèse est majorante.
5.2.2 Résultats - rejets atmosphériques - ICPE historiques du périmètre de l’INB 105

En période 2, les concentrations d’activité dans le sol au niveau du point le plus impacté dans l’environnement et dues aux rejets atmosphériques des différentes exutoires atmosphériques des ICPE historiques du périmètre de l’INB 105, sont présentées dans le tableau suivant.

<table>
<thead>
<tr>
<th>Concentration d’activité dans le sol (Bq/kg)</th>
<th>CL4</th>
<th>Sas Structure 900</th>
<th>Sas Structure 400</th>
<th>Sas Structure 300</th>
<th>Sas Structure 1200</th>
<th>Sas Structure 3100</th>
<th>Sas Structure 1000</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,57E-07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,57E-07</td>
</tr>
<tr>
<td>Np-237</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,19E-06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,19E-06</td>
</tr>
<tr>
<td>Pu-238</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,73E-06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,73E-06</td>
</tr>
<tr>
<td>Pu-239</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,77E-06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,77E-06</td>
</tr>
<tr>
<td>Tc-99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,63E-08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,63E-08</td>
</tr>
<tr>
<td>Th-228</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,34E-07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,34E-07</td>
</tr>
<tr>
<td>Th-231</td>
<td>1,77E-09</td>
<td>3,62E-10</td>
<td>5,43E-10</td>
<td>1,81E-10</td>
<td>4,29E-11</td>
<td>7,59E-11</td>
<td>1,21E-10</td>
<td>3,10E-09</td>
</tr>
<tr>
<td>Th-234</td>
<td>8,74E-07</td>
<td>1,79E-07</td>
<td>2,68E-07</td>
<td>6,33E-08</td>
<td>2,12E-08</td>
<td>3,75E-08</td>
<td>5,99E-08</td>
<td>1,50E-06</td>
</tr>
<tr>
<td>U-234</td>
<td>4,04E-05</td>
<td>8,29E-06</td>
<td>1,24E-05</td>
<td>8,76E-06</td>
<td>9,82E-07</td>
<td>1,74E-06</td>
<td>2,77E-06</td>
<td>7,54E-05</td>
</tr>
<tr>
<td>U-235</td>
<td>1,85E-06</td>
<td>3,79E-07</td>
<td>5,69E-07</td>
<td>1,90E-07</td>
<td>4,49E-08</td>
<td>7,94E-08</td>
<td>1,27E-07</td>
<td>3,24E-06</td>
</tr>
<tr>
<td>U-238</td>
<td>4,02E-05</td>
<td>8,23E-06</td>
<td>1,23E-05</td>
<td>2,93E-06</td>
<td>9,74E-07</td>
<td>1,72E-06</td>
<td>2,76E-06</td>
<td>6,91E-05</td>
</tr>
</tbody>
</table>

Tableau 29 : Concentration d’activité dans le sol attribuable aux rejets des ICPE historiques du périmètre de l’INB 105 au point le plus impacté dans l’environnement – période 2

L’outil ERICA permet ensuite de calculer les quotients de risque correspondants. Les organismes de référence les plus impactés sont les mêmes que pour les rejets liés aux opérations de démantèlement de l’INB 105 (voir Tableau 28).

<table>
<thead>
<tr>
<th>Radionucléides</th>
<th>Quotient de risque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137</td>
<td>8,22E-11</td>
</tr>
<tr>
<td>Np-237</td>
<td>8,45E-09</td>
</tr>
<tr>
<td>Pu-238</td>
<td>1,70E-09</td>
</tr>
<tr>
<td>Pu-239</td>
<td>1,63E-09</td>
</tr>
<tr>
<td>Tc-99</td>
<td>4,08E-11</td>
</tr>
<tr>
<td>Th-228</td>
<td>6,00E-10</td>
</tr>
<tr>
<td>Th-231</td>
<td>8,46E-15</td>
</tr>
<tr>
<td>Th-234</td>
<td>9,38E-12</td>
</tr>
<tr>
<td>U-234</td>
<td>4,52E-08</td>
</tr>
<tr>
<td>U-235</td>
<td>1,84E-09</td>
</tr>
</tbody>
</table>
Tableau 30 : Quotient de risque attribuable aux rejets des ICPE historiques du périmètre de l’INB 105 au point le plus impacté dans l’environnement – période 2

Le quotient de risque attribuable aux rejets atmosphériques des installations ICPE historiques du périmètre de l’INB 105 en période 2 est de \(1,05 \times 10^{-7}\) pour le point le plus impacté dans l’environnement. Il est considéré que pour un quotient de risque inférieur à 1, le risque radiologique pour l’environnement est négligeable et préconise d’arrêter l’étude.

5.2.3 Résultats - rejets atmosphériques - ICPE de l’usine COMURHEX II

En période 2, les concentrations d’activité dans le sol au niveau du point le plus impacté dans l’environnement et dues aux rejets atmosphériques de la cheminée CF des ICPE de l’usine COMURHEX II, sont présentées dans le tableau suivant.

<table>
<thead>
<tr>
<th>Radionucléides</th>
<th>Quotient de risque</th>
<th>Concentration d’activité dans le sol (Bq/kg)</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-238</td>
<td>4,57E-08</td>
<td>1,00E-07</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>1,05E-07</td>
<td>4,95E-05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,05E-04</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,29E-03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,05E-04</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,27E-03</td>
<td></td>
</tr>
</tbody>
</table>

(*) La contribution du \(^{234}\)Pa est prise en compte dans le calcul de dose du \(^{234}\)Th (voir § 4.3).

Tableau 31 : Concentration d’activité dans le sol attribuable aux rejets des ICPE de l’usine COMURHEX II au point le plus impacté dans l’environnement - période 2

L’outil ERICA permet ensuite de calculer les quotients de risque correspondants ainsi que l’organisme de référence le plus impacté pour chaque radionucléide.
Radionuclédides	Quotient de risque	Organisme de référence le plus impacté
U-235 | 5.97E-08 | Lichen et Bryophyte
U-238 | 1.50E-06 | Lichen et Bryophyte
\(\Sigma \) | 2.93E-06 |

Tableau 32 : Quotient de risque attributable aux rejets des ICPE de l’usine COMURHEX II au point le plus impacté dans l’environnement - période 2

Le quotient de risque attributable aux rejets atmosphériques des ICPE de l’usine COMURHEX II en période 2 est de \(2.93 \times 10^{-6} \) pour le point le plus impacté dans l’environnement. Il est considéré que pour un quotient de risque inférieur à 1, le risque radiologique pour l’environnement est négligeable et il est préconisé d’arrêter l’étude.

5.2.4 Synthèse des résultats - rejets atmosphériques - période 2

5.2.4.1 Point le plus impacté dans l’environnement

Les quotients de risque induits par les rejets atmosphériques de chaque installation sont rappelés dans le tableau suivant :

<table>
<thead>
<tr>
<th>Quotient de risque</th>
<th>DEM INB 105</th>
<th>ICPE historiques du périmètre INB 105</th>
<th>ICPE usine COMURHEX II</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quotient de risque</td>
<td>8.66E-08</td>
<td>1.05E-07</td>
<td>2.93E-06</td>
<td>3.12E-06</td>
</tr>
</tbody>
</table>

Tableau 33 : Quotient de risque attribuable aux différentes installations du périmètre de l’INB 105 au point le plus impacté dans l’environnement – période 2

En période 2, l’ensemble des rejets atmosphériques de la direction de la conversion de l’Établissement AREVA NC de Pierrelatte est à l’origine d’un quotient de risque global de \(3.12 \times 10^{-6} \). La valeur obtenue étant très inférieure à la valeur de référence de 1, on peut conclure en l’absence de risque radiologique pour l’environnement en période 2.

Les rejets des opérations de démantèlement de l’INB 105 représentent moins de 3% du quotient de risque global des installations du périmètre de l’INB 105.

AREVA RISK MANAGEMENT CONSULTING S.A.S.
5.2.4.2 Point le plus exposé de la zone Natura 2000

Les concentrations d’activité dans le sol attributable aux rejets atmosphériques des différentes installations de la direction de la conversion de l’Établissement AREVA NC de Pierrelatte ont également été calculées au niveau du point le plus exposé dans la zone Natura 2000 (Point G localisé sur la Figure 5). Ces concentrations sont présentées dans le tableau suivant :

<table>
<thead>
<tr>
<th>Concentration d’activité dans le sol (Bq/kg)</th>
<th>DEM INB 105</th>
<th>ICPE historiques du périmètre INB 105</th>
<th>ICPE usine COMURHEX II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137</td>
<td>6,52E-08</td>
<td>7,18E-08</td>
<td></td>
</tr>
<tr>
<td>Np-237</td>
<td>8,11E-07</td>
<td>8,92E-07</td>
<td></td>
</tr>
<tr>
<td>Pu-238</td>
<td>4,39E-07</td>
<td>4,84E-07</td>
<td></td>
</tr>
<tr>
<td>Pu-239</td>
<td>4,48E-07</td>
<td>4,94E-07</td>
<td></td>
</tr>
<tr>
<td>Tc-99</td>
<td>2,19E-08</td>
<td>2,41E-08</td>
<td></td>
</tr>
<tr>
<td>Th-228</td>
<td>6,14E-08</td>
<td>3,74E-08</td>
<td></td>
</tr>
<tr>
<td>Th-231</td>
<td>2,10E-10</td>
<td>9,24E-10</td>
<td>5,18E-08</td>
</tr>
<tr>
<td>Th-234</td>
<td>2,85E-08</td>
<td>4,49E-07</td>
<td>2,55E-05</td>
</tr>
<tr>
<td>U-234</td>
<td>4,02E-06</td>
<td>2,24E-05</td>
<td>1,18E-03</td>
</tr>
<tr>
<td>U-235</td>
<td>2,20E-07</td>
<td>9,67E-07</td>
<td>5,42E-05</td>
</tr>
<tr>
<td>U-238</td>
<td>1,32E-06</td>
<td>2,06E-05</td>
<td>1,17E-03</td>
</tr>
</tbody>
</table>

Tableau 34 : Concentration d’activité dans le sol attributable aux différentes installations incluses dans le périmètre de l’INB 105 au point le plus exposé de la zone Natura 2000 en période 2

Les quotients de risque globaux associés sont les suivants :

<table>
<thead>
<tr>
<th>DEM INB 105</th>
<th>ICPE historiques du périmètre INB 105</th>
<th>ICPE usine COMURHEX II</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quotient de risque</td>
<td>6,71E-09</td>
<td>3,11E-08</td>
<td>1,51E-06</td>
</tr>
</tbody>
</table>

Tableau 35 : Quotient de risque attribuable aux différentes installations, au point le plus exposé de la zone Natura 2000 en période 2

Dans la zone Natura 2000 la plus proche, le quotient de risque attribuable aux rejets atmosphériques de la direction de la conversion de l’Établissement AREVA NC de Pierrelatte en période 2 est de $3,44 \times 10^{-7}$.
Les rejets de l'INB 105 représentent moins de 0,5% du quotient de risque global des installations du périmètre de l'INB 105.

De même qu’en période 1, le quotient de risque obtenu au point le plus exposé de la zone Natura 2000 la plus proche est inférieur au quotient de risque du point le plus exposé dans l’environnement et pour lequel il a été conclu une absence d’impact.
6 Résultats - rejets liquides

L'étude est démarrée au Niveau 1 de l'outil ERICA et sera poursuivie si besoin aux niveaux supérieurs. Ce niveau repose sur plusieurs hypothèses majorantes et constitue ainsi un premier niveau d’approche qui permet d’écarter les sites où le risque radiologique pour l’environnement est négligeable.

6.1 Résultats - rejets liquides - période 1

A partir du terme source et des caractéristiques du milieu récepteur (canal de Donzère-Mondragon), le modèle de dispersion SRS n°19 permet de déterminer les concentrations d’activité dans l’eau pour chaque radionucléide à une distance de 70 m du point de rejet. La concentration d’activité totale, due à l’ensemble des activités de la direction de la conversion de l’Établissement AREVA NC de Pierrelatte en période 1, est calculée à ce point.

Tableau 36 : Concentration d’activité dans l’eau - période 1

L'outil ERICA permet ensuite de calculer les quotients de risque correspondants ainsi que l’organisme de référence le plus impacté pour chaque radionucléide.

<table>
<thead>
<tr>
<th>Concentration d’activité dans l’eau (Bq/L)</th>
<th>ICPE historiques du périmètre de l’INB 105</th>
<th>ICPE de l’usine CX II</th>
<th>Eaux pluviales</th>
<th>Ouvrage de protection de la Gaffière</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>procédé</td>
<td>rinçage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234U</td>
<td>1,16E-05</td>
<td>1,45E-06</td>
<td>2,03E-05</td>
<td>2,90E-05</td>
<td>1,02E-04</td>
</tr>
<tr>
<td>235U</td>
<td>5,31E-07</td>
<td>6,64E-08</td>
<td>9,29E-07</td>
<td>1,33E-06</td>
<td>4,64E-06</td>
</tr>
<tr>
<td>238U</td>
<td>1,15E-05</td>
<td>1,43E-06</td>
<td>2,01E-05</td>
<td>2,88E-05</td>
<td>1,00E-04</td>
</tr>
<tr>
<td>231Th</td>
<td>5,30E-07</td>
<td>6,63E-08</td>
<td>9,28E-07</td>
<td>1,33E-06</td>
<td>4,64E-06</td>
</tr>
<tr>
<td>234Th (*)</td>
<td>1,16E-05</td>
<td>1,44E-06</td>
<td>2,02E-05</td>
<td>2,89E-05</td>
<td>1,01E-04</td>
</tr>
</tbody>
</table>

(*) La contribution du 234Pa est prise en compte dans le calcul de dose du 234Th (voir § 4.3).

<table>
<thead>
<tr>
<th>Quotient de risque</th>
<th>ICPE historiques du périmètre de l’INB 105</th>
<th>ICPE de l’usine CX II</th>
<th>Eaux pluviales</th>
<th>Ouvrage de protection de la Gaffière</th>
<th>Total</th>
<th>Organisme de référence le plus impacté</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Procédé</td>
<td>Rinçage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234U</td>
<td>2,75E-04</td>
<td>3,43E-05</td>
<td>4,81E-04</td>
<td>6,87E-04</td>
<td>2,41E-03</td>
<td>3,89E-03</td>
</tr>
<tr>
<td>235U</td>
<td>1,17E-05</td>
<td>1,46E-06</td>
<td>2,04E-05</td>
<td>2,93E-05</td>
<td>1,02E-04</td>
<td>1,65E-04</td>
</tr>
<tr>
<td>238U</td>
<td>2,34E-04</td>
<td>2,91E-05</td>
<td>4,09E-04</td>
<td>5,84E-04</td>
<td>2,04E-03</td>
<td>3,29E-03</td>
</tr>
<tr>
<td>231Th</td>
<td>2,76E-05</td>
<td>3,45E-06</td>
<td>4,83E-05</td>
<td>6,91E-05</td>
<td>2,41E-04</td>
<td>3,90E-04</td>
</tr>
</tbody>
</table>
Le quotient de risque global obtenu est de **0,18**. On considère que pour un quotient de risque inférieur à 1, le risque radiologique pour l’environnement est négligeable et préconise d’arrêter l’étude.

Les opérations de rinçage des ICPE historiques présentes du le périmètre de l’INB 105 liées à leur mise à l’arrêt définitif avant remise en état ne représentent que 0,88% du quotient de risque global.

Le plus gros contributeur est l’ouvrage de protection de la Gaffière puisqu’il représente 62% du quotient de risque global, le flux annuel maximum en uranium fixé par arrêté préfectoral étant bien supérieur à ceux des autres effluents.

Il convient de souligner qu’au niveau 1, le quotient de risque global est obtenu en sommant les quotients de risque de chaque radionucléide alors que ces derniers sont déterminés pour des organismes de référence différents, ce qui constitue une hypothèse est majorante.

6.2 Résultats rejets liquides - période 2

A partir du terme source et des caractéristiques du milieu récepteur (canal de Donzère-Mondragon), le modèle de dispersion SRS n°19 permet de déterminer les concentrations d’activité dans l’eau pour chaque radionucléide à une distance de 70 m du point de rejet. La concentration d’activité totale due à l’ensemble des activités de la direction de la conversion de l’Établissement AREVA NC de Pierrelatte en période 2 est calculée.

<table>
<thead>
<tr>
<th>Concentration d’activité dans l’eau (Bq/L)</th>
<th>ICPE historiques du périmètre de l’INB 105</th>
<th>ICPE de l’usine CX II</th>
<th>Eaux pluviales</th>
<th>Ouvrage de protection de la Gaffière</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>procédé</td>
<td>rinçage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234U</td>
<td>2,90E-07</td>
<td>2,03E-05</td>
<td>2,90E-05</td>
<td>1,02E-04</td>
<td>1,54E-04</td>
</tr>
<tr>
<td>235U</td>
<td>1,33E-08</td>
<td>9,29E-07</td>
<td>1,33E-06</td>
<td>4,64E-06</td>
<td>7,02E-06</td>
</tr>
<tr>
<td>238U</td>
<td>2,88E-07</td>
<td>2,01E-05</td>
<td>2,98E-05</td>
<td>1,00E-04</td>
<td>1,51E-04</td>
</tr>
<tr>
<td>231Th</td>
<td>1,33E-08</td>
<td>9,28E-07</td>
<td>1,33E-06</td>
<td>4,64E-06</td>
<td>7,02E-06</td>
</tr>
<tr>
<td>234Th</td>
<td>2,89E-07</td>
<td>2,02E-05</td>
<td>2,89E-05</td>
<td>1,01E-04</td>
<td>1,53E-04</td>
</tr>
</tbody>
</table>

(*) La contribution du 234Pa est prise en compte dans le calcul de dose du 234Th (voir § 4.3).

Tableau 38 : Concentration d’activité dans l’eau - période 2
L’outil ERICA permet ensuite de calculer les quotients de risque correspondant ainsi que l’organisme de référence le plus impacté pour chaque radionucléide.

<table>
<thead>
<tr>
<th>Quotient de risque</th>
<th>ICPE historiques du périmètre de l’INB 105</th>
<th>ICPE de l’usine CX II</th>
<th>Eaux pluviales</th>
<th>Ouvrage de protection de la Gaffière</th>
<th>Total</th>
<th>Organisme de référence le plus impacté</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Procédé</td>
<td>Rinçage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234U</td>
<td>6,87E-06</td>
<td>5,49E-05</td>
<td>4,81E-04</td>
<td>6,87E-04</td>
<td>2,41E-03</td>
<td>3,64E-03</td>
</tr>
<tr>
<td>235U</td>
<td>2,93E-07</td>
<td>2,34E-06</td>
<td>2,04E-05</td>
<td>2,93E-05</td>
<td>1,02E-04</td>
<td>1,54E-04</td>
</tr>
<tr>
<td>238U</td>
<td>5,84E-06</td>
<td>4,66E-05</td>
<td>4,09E-04</td>
<td>5,84E-04</td>
<td>2,04E-03</td>
<td>3,09E-03</td>
</tr>
<tr>
<td>231Th</td>
<td>6,91E-07</td>
<td>5,52E-06</td>
<td>4,83E-05</td>
<td>6,91E-05</td>
<td>2,41E-04</td>
<td>3,65E-04</td>
</tr>
<tr>
<td>234Th</td>
<td>3,09E-04</td>
<td>2,48E-03</td>
<td>2,16E-02</td>
<td>3,09E-02</td>
<td>1,08E-01</td>
<td>1,64E-01</td>
</tr>
<tr>
<td>Σ</td>
<td>3,23E-04</td>
<td>2,59E-03</td>
<td>0,023</td>
<td>0,032</td>
<td>0,11</td>
<td>0,17</td>
</tr>
</tbody>
</table>

Tableau 39 : Quotient de risque - période 2

Le quotient de risque global obtenu est de 0,17. L’outil considère que pour un quotient de risque inférieur à 1, le risque radiologique pour l’environnement est négligeable et préconise d’arrêter l’étude.

Les opérations de rinçage des ICPE historiques présentes du le périmètre de l’INB 105 liées à leur mise à l’arrêt définitif avant remise en état ne représentent que 1,51% du quotient de risque global.

Comme pour la période 1, le plus gros contributeur est l’ouvrage de protection de la Gaffière puisqu’il représente 66% du quotient de risque global, le flux annuel maximum en uranium fixé par arrêté préfectoral étant bien supérieur à ceux des autres effluents.

6.3 Analyse de sensibilité

Pour l’étude de l’impact des rejets liquides radioactifs sur l’environnement ci-dessus, il a été considéré l’existence d’un exutoire unique dans le canal de Donzère-Mondragon. L’analyse de sensibilité ci-après a pour but de démontrer le caractère majorant de cette hypothèse.

- **Cas réel :**

On considère un rejet en 234U de 1 Bq/s, au niveau de l’émissaire du bassin tampon, de l’exutoire de la STEC et de l’exutoire de SOCATRI. Le point de mesure considéré est situé à une distance égale à sept fois la profondeur du canal, soit 70m, du point le plus en aval à savoir l’exutoire de SOCATRI.

La distance entre l’émissaire du bassin tampon et l’exutoire de SOCATRI est d’environ 1 200m et celle entre l’exutoire de la STEC et l’exutoire de SOCATRI d’environ 875m. Ces trois exutoires sont positionnés sur la Figure 3 : Localisation des exutoires d’effluents liquides. Il convient de souligner que le canal ne possède pas d’affluent entre ces points de rejet.
On obtient alors à l'aide du modèle de dispersion SRS n°19 pour le milieu « Rivière » les concentrations suivantes :

<table>
<thead>
<tr>
<th>^{234}U</th>
<th>Bassin tampon</th>
<th>Exutoire STEC</th>
<th>Exutoire SOCATRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejet (Bq/s)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Distance (m)</td>
<td>1270</td>
<td>945</td>
<td>70</td>
</tr>
<tr>
<td>Concentration (Bq/L)</td>
<td>$2,71.10^{-6}$</td>
<td>$3,06.10^{-6}$</td>
<td>$7,43.10^{-6}$</td>
</tr>
</tbody>
</table>

Tableau 40 : Dispersion liquide - Analyse de sensibilité

Soit une concentration totale de $1,32.10^{-5}$ Bq/L.

- **Cas étudié :**

En considérant un rejet unique en ^{234}U de 3 Bq/s et un point de mesure situé à 70m, on obtient une concentration totale de $2,23.10^{-5}$ Bq/L supérieure à la concentration calculée à partir de 3 exutoires séparés ($1,32.10^{-5}$ Bq/L).

En conclusion, l’hypothèse de l’exutoire unique est bien une hypothèse majorante.
7 Conclusion

Les calculs réalisés avec l’outil ERICA, selon les informations et les connaissances disponibles au moment de la réalisation de cette étude, permettent conclure que le risque environnemental induit par les rejets radioactifs, liquides et atmosphériques, des différentes installations présentes dans le périmètre de l’INB 105 est négligeable durant les deux périodes du démantèlement de l’INB 105.

En effet :

- les quotients de risque globaux induits par les rejets atmosphériques de l’ensemble des installations sont largement inférieurs à 1 avec pour le point le plus exposé dans l’environnement, un quotient de risque de $1,71 \times 10^{-6}$ en période 1 et de $3,12 \times 10^{-6}$ en période 2 ;
- les quotients de risque globaux induit par les rejets liquides de l’ensemble installation sont inférieurs à 1 avec un quotient de risque égale à 0,18 en période 1 et égale à 0,17 en période 2 ;
- au niveau de la zone Natura 2000 la plus proche, les quotients de risque globaux calculés sont inférieurs aux quotients de risque déterminés pour le point le plus exposé dans l’environnement à l’extérieur de la plateforme du Tricastin.

De plus, les opérations de démantèlement de l’INB 105 ne constituent qu’une part minime de l’impact environnemental lié aux rejets radioactifs, liquides et atmosphériques, de l’ensemble des installations présentes dans le périmètre de l’INB 105.

En effet :

- les opérations de démantèlement de l’INB 105 ne mettent en œuvre que des procédés à sec et ne sont donc pas à l’origine de rejets liquides,
- les rejets atmosphériques liés aux opérations de démantèlement de l’INB 105 représentent moins de 3% du quotient de risque global pour les deux périodes définies.